
Designing Language-Oriented Programming Languages

Boaz Rosenan

Dept. of Mathematics and Computer Science
Open University of Israel

brosenan@cslab.openu.ac.il

Abstract
Today, language-oriented programming (LOP) is realized
by using either language workbenches or internal DSLs,
each with their own advantages and disadvantages. In this
work, we design a host language for DSLs with language
workbench features, thereby combining the two approaches
and enjoying the best of both worlds.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Specialized appli-
cation languages

General Terms Languages, Design

1. Introduction
Language-oriented programming(LOP) is a software de-
velopment paradigm that placesdomain-specific languages
(DSLs) at the center of the software development process [7,
1, 2]. With LOP, software is developed “from the middle
out” [7], starting with a definition of a DSL, or several in-
teroperable DSLs, going “up,” implementing the software
product using these DSLs, and going “down,” implement-
ing the DSLs themselves, and thus making the software ex-
ecutable.

DSLs play a key role in the realization of LOP, and con-
sequently code developed using LOP is declarative, con-
cise and close to the specification it is based on. DSLs are
highly expressive, each DSL fitted to the problem domain
it is designed to capture. DSLs increase reusability because
the same DSL can be used to implement similar but differ-
ent software products (e.g., different products in a software
product line). Reusability is maximized when using several,
interoperable DSLs. This increases granularity when shar-
ing DSLs between software products, and thus improves
reusability.

Copyright is held by the author/owner(s).

SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
ACM 978-1-4503-0240-1/10/10.

Fowler [2] makes a distinction between two kinds of
DSLs: externaland internal. External DSLsare DSLs that
are implemented as compilers, translators or interpreters,
and are thusexternalto the programming language in which
they are implemented.Internal DSLs(also known asembed-
ded DSLs[3]) are implemented using definitions in a pre-
existing, usually general-purpose programming language,
named thehost language, and are thus internal to the host
language.

These two kinds of DSLs have significant trade-offs. On
the one hand, external DSLs provide their designers with full
freedom in defining the desired syntax and semantics, while
internal DSLs are bound to the syntax and semantics of the
host language. On the other hand, internal DSLs reuse the
compiler or interpreter of the host language, making their
implementation much simpler in comparison with external
DSLs. Internal DSLs are also better suited for DSL interop-
erability, since code in different DSLs written over the same
host language is actually code in the host language.

Intuitively, external DSLs are better for going “up” in
the LOP process, as they are potentially more expressive,
while internal DSLs are better for going “down”, as they are
easier to implement. To make LOP an effective and practical
paradigm, there is a need to balance the trade-offs between
internal and external DSLs.

2. State of the Art
The limitations of both internal and external DSLs have bi-
ased the software industry in favor of conventional program-
ming paradigms over LOP. Recent work attempts to remedy
this by bridging the gap between internal and external DSLs
through the use of language workbenches.Language Work-
benchesare Integrated Development Environments (IDEs)
for defining, implementing and using external DSLs [2].
They address some of the limitations of external DSLs, al-
lowing them to enjoy some of the features traditionally asso-
ciated with internal DSLs. These include relieving the devel-
oper of the need to provide a parser for the DSL and support-
ing symbolic integration between DSLs [2]. They ease the
definition and implementation of external DSLs by applying
LOP to these tasks, i.e., by providingmeta-DSLsfor defin-
ing and implementing DSLs. A unique feature of language



workbenches is the fact they use projectional editing [2] as
an alternative to parsing. With this, they edit the DSL ab-
stract syntax tree (AST) directly by projection to a view,
where the AST is considered amodel. DSL interoperabil-
ity is thus possible through interoperability between models.
However, DSL implementation is still hard, and suffers from
the limitations of code generation or those of interpretation
(whichever is selected as the implementation method). The
most notable language workbenches include MPS [1] and
the Intentional Domain Workbench [6].

In contrast to language workbenches, our work takes the
opposite direction, making internal DSLs enjoy features tra-
ditionally associated with external DSLs.

3. Approach
In this work we design ahost languagefor internal DSLs,
with properties currently associated mostly with language
workbenches. These properties are: (1) the ability to define
and use projectional editing, and (2) the ability to define and
enforceDSL schemas, i.e., the set of rules defining valid
DSL code. We call such a host language alanguage-oriented
programming language(LOPL), as it is well suited to sup-
port LOP, just like object-oriented programming languages
(OOPL) are suited to support OOP.

An LOPL can be based on the semantics of a non-LOP
programming language, as long as that language meets cer-
tain criteria. First, it should be a goodhost languagefor in-
ternal DSLs. To allow projectional editing it needs to be able
to reason about its own code, meaning that the language
should to behomoiconicor reflective, at least to some ex-
tent. For projectional editing to be effective, the language
should to beminimalistic, i.e., have a small number of node
types in the AST representation of the code. This is impor-
tant because projectional editing transforms this AST into
visuals. Projection definitions can refer to a small number of
node types, such as lists in Lisp, compound terms in Prolog
or message-sends in Smalltalk. Projectional editing will be
most effective if this small number of types comprises most
of the AST. Since the code providing the projection defini-
tion needs to run at “design time,” i.e., as the DSL code is
being edited,dynamic semanticsmakes sense for LOPLs.

Static typingof the host language can help define and en-
force DSL schemas. When used with projectional editing,
static typing can make the editor “smarter,” guiding the user
to write valid DSL code to begin with. When using a dy-
namic host language, the type system can be implemented
by using reflection.

4. Validation
To validate our approach, we developedCedalion [4], an
LOP language. Cedalion uses logic-programming as its core
semantics, taking advantage of the homoiconic, minimalis-
tic, and dynamic nature of Prolog. Another consideration for

the selection of logic-programming is the ease of defining
operational semantics for DSLs, in a clean and formal way.

Cedalion code is edited using a projectional editor, and
the visualization of language constructs is customized by
adding clauses to a predicate. Cedalion is statically typed,
but its type system is implemented from within the language,
as a set of predicates, rather then as part of the language. The
predicates comprising the type system are activated from
within the visualization mechanism, highlighting erroneous
code and suggesting solutions.

LOP is realized in Cedalion by defining, implementing
and using internal DSLs, using Cedalion as the host lan-
guage. A DSL definition includes type signatures and pro-
jection definitions for all new constructs, while the imple-
mentation usually consists of deductions providing opera-
tional semantics for these constructs, as demonstrated by
Menzies [5].

5. Conclusion
The main contribution of our work is in presenting a novel
approach for bridging the gap between internal and external
DSLs. Its uniqueness is in the direction we take: using in-
ternal DSLs, taking advantage of the ease of implementing
them, while adding language-workbench features (namely
projectional editing and enforcing a schema) to provide the
freedom and safety in defining DSLs, qualities traditionally
associated with external DSLs.

As a paradigm, LOP has a great potential in improving
the way we write and maintain software. However, it is not
widely adopted due to the limitations of DSLs, internal or
external. LOP languages have the potential of changing that,
with languages such as Cedalion paving the way.

References
[1] S. Dmitriev. Language oriented programming: The next

programming paradigm.JetBrains onBoard, 1(2), 2004.

[2] M. Fowler. Language workbenches: The killer-app for domain
specific languages. 2005.http://www.martinfowler.
com/articles/languageWorkbench.html.

[3] P. Hudak. Building domain-specific embedded languages.
ACM Computing Surveys (CSUR), 28(4es), 1996.

[4] D. H. Lorenz and B. Rosenan. Cedalion: A language oriented
programming language. InIBM Programming Languages and
Development Environments Seminar, Haifa, Israel, Apr. 14
2010. IBM Research - Haifa.

[5] T. Menzies. DSLs: A logical approach, 2001. Lecture Notes,
EECE 571F,http://courses.ece.ubc.ca/571f/
lectures.html.

[6] C. Simonyi, M. Christerson, and S. Clifford. Intentional
software.ACM SIGPLAN Notices, 41(10):451–464, 2006.

[7] M. P. Ward. Language-oriented programming.Software-
Concepts and Tools, 15(4):147–161, 1994.


