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Abstract
Language Oriented Programming (LOP) is a paradigm that
puts domain specific programming languages (DSLs) at the
center of the software development process. Currently, there
are three main approaches to LOP: (1) the use of internal
DSLs, implemented as libraries in a given host language;
(2) the use of external DSLs, implemented as interpreters
or compilers in an external language; and (3) the use of lan-
guage workbenches, which are integrated development en-
vironments (IDEs) for defining and using external DSLs. In
this paper, we contribute: (4) a novel language-oriented ap-
proach to LOP for defining and using internal DSLs. While
language workbenches adapt internal DSL features to over-
come some of the limitations of external DSLs, our approach
adapts language workbench features to overcome some of
the limitations of internal DSLs. We introduce Cedalion, an
LOP host language for internal DSLs, featuring static vali-
dation and projectional editing. To validate our approach we
present a case study in which Cedalion was used by biolo-
gists in designing a DNA microarray for molecular Biology
research.

Categories and Subject Descriptors D.1.6 [Programming
Techniques]: Logic Programming—DSLs; D.2.6 [Software
Engineering]: Programming Environments—Programmer
workbench; D.3.2 [Programming Languages]: Language
Classifications—Extensible languages.

General Terms Design, Languages.

Keywords Language-oriented programming (LOP), Lan-
guage workbenches, Logic programming, Domain-specific
languages (DSL).
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1. Introduction
Language Oriented Programming (LOP) [5, 7, 34]1 is
a paradigm that puts domain specific programming lan-
guages (DSLs) at the center of the software development
process. LOP is known by different code names. At Mi-
crosoft, LOP was named Intentional Programming [27].
That project lead to the formation of the Intentional Soft-
ware company, which uses that name to describe their ver-
sion of LOP [28]. Other terms related to LOP include Con-
cept Programming in the XL programming language [36]
and Dialecting in REBOL [25]. Model Driven (Software)
Development (MDD/MDSD) [19, 30] is also a related term,
when considering domain-specific modeling languages as
DSLs [10].

The LOP software development process consists of three
steps: (1) a definition of a DSL or several interoperable
DSLs; (2) the implementation of these DSLs, e.g., by means
of interpreters, translators or compilers; and (3) the develop-
ment of the software using these interoperable DSLs. LOP
software development is often viewed as working “from the
middle out.” The DSL definitions (Step 1) come first, fol-
lowed by development of the application on top (Step 3),
which can be done in parallel with the underlying imple-
mentation of the DSLs (Step 2).

1.1 Classification of LOP Environments
We use the term LOP environment to generally refer to a
language or a tool facilitating LOP software development.
There are currently three general categories of LOP environ-
ments [7], each representing a unique approach to LOP. We
discuss each of the categories briefly here. Table 1 provides
a summary of their trade-offs.

(I) Internal DSLs (or embedded [13] DSLs) are DSLs imple-
mented from within a host programming language. Code
in an internal DSL is actually code in the host language.
These DSLs are easy and thus cost-effective to imple-
ment, and enjoy interoperability “out of the box.” How-
ever, the syntax and semantics of the DSL are subject to
the constraints of the host language. Tools provided for

1 To the best of our knowledge, the term LOP was coined by Ward [34] and
adopted by Dmitriev [5] and Fowler [7].
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the host language can be used when working with inter-
nal DSLs, but since these tools are not made for DSLs,
productivity when using them does not match that of cus-
tom DSL tooling.

(II) External DSLs are DSLs implemented as compilers
or interpreters, and are thus external to the language in
which they were implemented. Because they are imple-
mented externally, their developers enjoy more “freedom
of expression” in defining them, and are only bound by
the limitations of the tools they use, typically compiler-
generation tool chains, such as Lex and Yacc (which they
are free to choose). However, that freedom comes at a
price. Implementing external DSLs is usually costly. Tra-
ditional tool chains do not support DSL interoperability,
and leave the construction of productivity tools to the
DSL developer, thereby making the use of these DSLs
also cost-ineffective.

(III) Language workbenches [5, 7, 14, 28] are integrated de-
velopment environments (IDEs) for defining, implement-
ing and using external DSLs. They combine the features
of external and internal DSLs to provide a better solu-
tion for LOP. They use external DSLs as a stepping stone
and add a common representation for all DSLs, a fea-
ture associated with internal DSLs. Working with exter-
nal DSLs, language workbenches retain their freedom in
defining DSLs, but also support interoperability between
DSLs. They provide tooling to make the use of DSLs
more practical. They also provide their own meta-DSLs
to facilitate DSL implementation, but this part is still not
as cost-effective as it is for internal DSLs [17].

1.2 Contribution
This paper introduces Cedalion—an LOP environment of a
new sort, and a category in itself, we name LOP languages:

(IV) LOP languages present a novel approach to LOP (Fig-
ure 1) . Instead of taking external DSLs and giving them
internal DSL tooling (Figure 1, III), LOP languages take
internal DSLs and give them external DSL tooling (Fig-
ure 1, IV). Cedalion is an example of such an LOP lan-
guage. It is the first LOP environment to feature hosting
of internal DSLs, projectional editing [8], and static vali-
dation. Collectively, these help to overcome the inherent
restrictions on syntax and semantics definition associated
with the use of internal DSLs.

MPS [5]
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External DSLs

Intentional [28]

Internal DSLs

for External DSLs
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Figure 1: Classification of LOP environments

The main observation is that internal DSLs can provide a
much better stepping stone for an LOP environment than ex-
ternal DSLs. Internal DSLs are naturally interoperable and
are already cost-effective with respect to DSL implementa-
tion. Their main limitation is the constraints imposed by the
hosting language on the DSL definition. However, this limi-
tation seems to be easier to bridge, relative to the limitations
posed by external DSLs (Table 1).

Since we use internal DSLs as the stepping stone, our
LOP environment solution is essentially a host language. We
call such a host language for LOP a workbench language
(as opposed to language workbench) or, to avoid confusion,
simply: an LOP language.

LOP languages contest language workbenches as the sole
practical approach to LOP. We demonstrate that an LOP lan-
guage can provide a viable alternative to a language work-
bench in combining the advantages of internal DSLs with the
flexibility associated with external DSLs. Specifically, we
contribute a concrete implementation of an LOP language:
Cedalion [4, 16, 23].

1.3 Evaluation
As evidence of the effectiveness of Cedalion as an LOP lan-
guage and environment, we present for illustration a small
time schedule example (Section 4) and for validation a real-
life Bioinformatics case study (Section 5). The effectiveness
is further evident from the use of Cedalion in the implemen-
tation of parts of Cedalion itself and its DSL libraries. These
examples demonstrate the viability and versatility of an LOP
language as an LOP environment.



2. Properties of LOP Environments
In order to reason about LOP environments, we identify
the following indispensable yet incomplete aspects of nearly
every LOP environment (“DSL Bill of Rights”):

• Freedom of expression (DSL definition): An ideal LOP
environment poses almost no syntactic or semantic lim-
itations on defining DSLs, allowing DSL code to be ex-
pressed in the way that is most familiar and intuitive to
domain experts.

• Economic freedom (DSL implementation and use): An
important goal of an LOP environment is to make LOP
practical and cost-effective. One of the prohibitive factors
in the practicality of LOP is the cost of implementing the
DSLs (the cost of going down the LOP process). A good
LOP environment reduces this cost enough to make LOP
cost-effective. However, implementing the DSL is not
enough. Using it (the cost of going up the LOP process)
must be cost-effective as well. The level of tooling, such
as syntax highlighting and auto-completion, determines
the effectiveness of the LOP environment.

• DSLs’ freedom of association (DSL interoperability):
The true benefit of LOP is realized when the LOP en-
vironment enables separate, reusable DSLs to be used
together to implement a complex system [17]. In partic-
ular, interoperability means that phrases in one DSL can
be embedded inside phrases in another DSL, to express
multi-paradigm behavior [31].

Next, we elaborate on each of these aspects.

2.1 Freedom of Expression (DSL Definition)
Freedom in DSL definition is the most basic characteristic of
an LOP environment. In LOP, we need to be able to define
DSLs to match the problem at hand. To be able to do that,
we have to be able to define a DSL exhibiting the syntax and
the semantics desired by the domain expert.

Syntactic Freedom A good LOP environment needs to
give its users the freedom to define DSLs that resemble, as
much as possible, the notation used by the domain experts.
For example, consider a DSL for defining sets, with a lan-
guage construct for the union operation. The natural math-
ematical notation from set theory (for the union of sets A
and B) is:

A ∪B

Ideally, we should be able to make the syntax for that con-
struct in our DSL identical to its mathematical representa-
tion.

One problem here would be the fact that ∪ is not an
ASCII character, and thus unacceptable in ASCII-based lan-
guages. An acceptable solution for that might be to use in-
stead:

A unionB

However, using pre-fix syntax such as

union(A,B)

or
(unionAB)

would be unadvised, since large expressions may be hard to
read that way.

In general, some restrictions on syntax such as confor-
mance to a grammar class, e.g., LALR(1) or LL(k), are ac-
ceptable here, but may not be acceptable when DSL interop-
erability is considered (Section 2.3). Other restrictions, such
as confinement to ASCII characters or a certain lexical struc-
ture, can be considered, but obviously, the less restrictions
the better. For Cedalion, our requirement is to enable the
more natural mathematical notation in this case (see Sec-
tion 3.4).

Semantic Freedom Semantic freedom applies to both
static and dynamic semantics. An important requirement
from an LOP environment is the ability to statically validate
that the DSL code is well-formed, so that errors can be de-
tected early, and in some cases, tooling may help write valid
code to begin with. An LOP environment should give DSL
designers the freedom to define any static semantics rules of
validity that make sense for their own DSL.

DSLs created on an LOP environment should also be
able to have any dynamic semantics. For example, fluent in-
terfaces [6], sometime used as textual DSLs (e.g., jMock
call-chains [9]) or visual DSLs (e.g., JavaBeans event-
graphs [18]), are very limited in their meaning. They are
only capable of describing things that can be represented by
chained method calls.

Many host languages for internal DSLs are very good
at providing freedom in defining dynamic semantics, but
because of their dynamic nature, they often do not support
custom static semantic rules for DSLs. For Cedalion, we
require both static and dynamic semantic freedom to be
supported.

2.2 Economic Freedom (Cost-effective DSL
Implementation and Use)

Cost-effectiveness is necessary for making LOP a viable ap-
proach in software development. All too often, software de-
velopers dismiss DSLs and use general-purpose languages
instead, due to the perceived cost of developing them. In
addition to the DSL development effort, one must take
into account the cost of using DSLs. DSLs are made to be
more concise than code in a general-purpose language, but
general-purpose languages often come with rich tools such
as smart editors, debuggers, profilers, etc., that compensate
for the verbosity of the language. When a DSL is lacking
this kind of tools, productivity is harmed. However, pro-
viding such tools for each DSL can be prohibitively costly
too [20].
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Figure 2: DSL interoperability illustrated

For Cedalion our requirement here is therefore twofold.
On the one hand, we require a cost-effective method for DSL
implementation. On the other hand, we require that the cost
of providing reasonable tooling for these DSLs will be low.
Only a fulfillment of both requirements will enable a cost-
effective LOP process.

2.3 DSLs’ Freedom of Association (DSL
Interoperability)

DSLs provide good tools for solving problems in their own
domains, but practical software systems are never about a
single problem domain. In fact, most real-life software sys-
tems work with multiple domains. One can claim that the
software of an auto-pilot mechanism of a light aircraft is “all
about” nested control loops. However, what good will that
software do if it cannot communicate with the motion drivers
steering the plane, and the sensors reading flight informa-
tion? Also, while piloting in a straight line is good enough
for limited purposes, a good auto-pilot system should be
able to connect to the plane’s navigational system and make
geodetic computations to follow a flight plan. All these are
problem domains that require their own DSLs.

DSLs’ freedom of association is what we call the abil-
ity to have several DSLs work together to build large, com-
plex, multi-paradigm software, such as the software for an
auto-pilot system. Traditionally, DSL interoperability has
been achieved by having each DSL interact with a general-
purpose programming language. An example, depicted in
Figure 2a, is the cooperation of Lex and Yacc (and their
alike), by integration to C. Both Lex and Yacc use actions
written in C, and the overall scanner/parser is translated into
C code. The C code produced by Lex and Yacc is then com-
bined to create a complete scanner-parser.

With LOP we want to avoid the need for “glue code.” We
want the DSLs to interact with one another directly. Just like
Yacc files contain embedded C code, we wish to embed code
in one DSL inside code in another DSL. In the auto-pilot
example this means, e.g., that motion code can be embedded
inside control loops (Figure 2b). It is obvious that this kind

of interoperability requires integration on both the syntactic
and the semantic levels.

Syntactic Interoperability This requires that the syntax of
multiple DSLs can be combined into a syntax of a com-
bined language. This requirement is far from trivial. For ex-
ample, if our LOP environment uses a parser generator that
requires grammars to be LALR(1), it is not guaranteed that
combining two valid LALR(1) grammars will emit a valid
LALR(1) grammar. Moreover, when combining two unam-
biguous grammars, there is no guarantee that the resulting
grammar will remain unambiguous. Syntactic interoperabil-
ity requires a method of dealing with such ambiguities.

Semantic Interoperability When combining DSLs, their
implementations need to interact, in order to provide a uni-
fied semantics. This requires some notion of common rep-
resentation for all DSLs provided by the LOP environment.
In addition, it requires coordination between the DSL imple-
mentations.

3. Cedalion in a Nutshell
Cedalion is a logic programming, LOP language and an IDE
workbench for hosting internal DSLs. Cedalion represent a
novel approach to LOP, one that like language workbenches,
bridges the gap between internal and external DSLs, allow-
ing its users to enjoy the best of both worlds. However, un-
like language workbenches, which start with external DSLs
and add a feature of internal DSLs (namely, a common rep-
resentation for DSLs), Cedalion starts with internal DSLs,
and adds language workbenches features (namely, projec-
tional editing and static validation) to the host programming
language.

However, interestingly enough, while projectional editing
is used in language workbenches to support syntactic inter-
operability for external DSLs, it is used in Cedalion to enable
syntactic freedom in defining internal DSLs. The other fea-
ture we take from language workbenches, static validation
capabilities, is used in Cedalion to check DSL code as the
code is being edited, and for providing tooling support (e.g.,
auto-completion) based on that.

3.1 The Cedalion Workbench
Cedalion code cannot be edited using traditional text editors
and can only be edited using a special projectional editor, a
dedicated editor for projectional editing. The Cedalion work-
bench [4], an Eclipse-based IDE, implements such a projec-
tional editor. Projectional editing offers an alternative to the
traditional parsing approach. With projectional editing, in-
stead of editing the code in a text editor and then parsing
it to form an abstract syntax tree (AST) of the code, we edit
the AST directly, and present it to the user using a projection,
that is, a transformation to some human readable representa-
tion, which is usually (but not necessarily) textual.

Figure 3 is a screenshot of the Cedalion workbench. The
editor screen is structured similar to the user interface of



Figure 3: A screenshot of the Cedalion workbench

a Web browser. The top of the window contains a text bar
(similar to the address bar of a Web browser) with a few
action buttons to its left. The text bar displays the text rep-
resentation of the currently selected Cedalion code. The rest
of the window’s real-estate (code area) is dedicated to pro-
jecting the content of the file being edited. The tab label in-
dicates the name of the file.

Even at first glance, one can see that the Cedalion work-
bench differs from a text editor. The projected Cedalion code
contains special symbols, and it is displayed using varying
font sizes and unorthodox layout. We will explain the mean-
ing of this code in Section 4. The code comprises a hierar-
chy of rectangular elements (we call terms), nested inside
one another. When the user clicks on a term, a selection box
appears around it, and the content of the text bar is replaced
with a textual “Prolog-like” projection of that term. This tex-
tual representation can be edited, and when hitting Enter, the
changes are applied to the code area, assuming the text com-
plies with the simple Prolog-like syntax.

The edited code can be either valid or invalid Cedalion
code. Unlike many syntax driven editors, Cedalion does al-

low invalid code to be edited. For example, an undefined
term can be used. In such a case, Cedalion will mark this
term with an error marker (a red rectangle with a small red
warning sign symbol at its top left), and provide the details
of the error as a tooltip. As can be seen in Figure 3, in the
case of an undefined concept, Cedalion claims a missing sig-
nature, and uses type inference to suggest what this signature
might be. Indeed, double clicking the red warning sign will
suggest inserting such a type signature before the current
statement. This is the way new concepts can be introduced.
Concepts and type signatures are discussed in Sections 3.2
and 3.5, respectively.

3.2 Abstract Syntax
Figure 4 shows an entity diagram of the structure of a
Cedalion program. A program consists of multiple state-
ments. A statement consists of a single compound term, and
provides scope for logic variables. A compound term holds
an identifier, associating it with a concept that determine its
meaning and its arity (the number of arguments it takes). Ac-
cording to its arity, each compound term takes zero or more
arguments, which are themselves terms. A term can be ei-



Figure 4: Entity diagram of the Cedalion program structure

ther a number, a string,2 a variable reference, or a compound
term. The latter allows compound terms to be complex.

Concepts and variables are depicted in Figure 4 in gray,
since they are not an actual part of the AST structure, but
rather are defined implicitly by referencing them from com-
pound terms and variable references, respectively. Reference
to both is done through an identifier. Identifiers used in vari-
able references to specify a variable are scoped within the
enclosing statement. The identifiers used in compound terms
to specify a concept are globally scoped. To avoid name col-
lisions, all concept identifiers in Cedalion contain a names-
pace prefix. This is a string that represents the package in
which this concept has been defined, or sometimes the DSL
to which the concept belongs. Informally, DSLs can be seen
as sets of concepts.

Statements form directed acyclic graphs (DAGs). A com-
pound term forms a tree, where each internal node is a com-
pound term with a non-zero arity, and the leafs are com-
pound terms with zero arity (atoms), numbers, strings, and
variable references. Linking the variable references to the
(implicit) variables they refer to, forms a DAG, since a vari-
able can be referenced more then once in the same statement.

3.3 Dynamic Semantics
The dynamic semantics of Cedalion is based on that of Pro-
log, with logic variables and predicates playing a major role
in its semantics.

Logic Variables Cedalion’s logic variables are born un-
bound, and can be bound to a term. Once bound to a term,
they do not change their value, unless the interpreter back-
tracks beyond the point in time when they were bound.
Cedalion has the same notion of term unification as Prolog.
This is a process in which two terms are being compared
to see if they match (i.e., there exists an assignment to their
variables that would make them equal).

Predicates Predicates are concepts that define a relation.
Their instances (compound terms for which their concept
is a predicate) are called goals. A goal can have zero or
more solutions, i.e., assignments to the variables referenced
from within the goal for which the resulting terms satisfy the
relationship defined by the predicate.

2 Unlike Prolog, where atoms (compound terms with zero arguments) are
used as strings

Like in Prolog, running a Cedalion program is done
by querying a goal. The result is given in the form of
zero or more variable assignments. However, unlike Prolog,
Cedalion predicates do not have side-effects, so Cedalion
predicates are limited to pure logic operations.

Cedalion provides around forty built-in predicates, which
are predicates that provide functionality otherwise not avail-
able to Cedalion programs. None of Cedalion’s built-in pred-
icates have side effects. Cedalion programs extend this pool
of predicates by defining new predicates. Similar to Prolog,
this is done using Horn clauses, which are statements of the
form:

Head :- Body (Clause)

where both Head and Body are goals. However, different
than Prolog, in Cedalion this is merely a textual representa-
tion for an abstract structure, where a Horn Clause statement
has a compound term of the concept named :-, with two argu-
ments, named Head and Body . Generally, this clause means
that a goal matching Head is true for every solution of Body .

Each predicate can have one or more Horn clauses defin-
ing its semantics. As in Prolog, they are joined through
disjunction, so a goal has a solution if it satisfies any of
the clauses defining the predicate it is based on. Note that
clauses in Prolog have either the form Head :- Body . or
the form Head . without a body, which is equivalent to
Head :- true.. Cedalion does not support clauses without
bodies, so the form Head :- true. should be used in such
cases.

Rewrite Rules Cedalion supports user defined statements.
These are statements that are not Horn clauses themselves,
but can be translated to Horn clauses using rewrite rules.
Rewrite rules are statements of the form:

S1  S2

which gives S1 meaning in terms of S2, that is, for every
statement S′1 matching S1, a statement S′2, which is given by
S2 under the same variable assignment, is contributed. This
rewrite rule will define semantics for statements matching
S1 when either S2 is a Horn clause, or rewrite rules exist
such that S2 can be expressed in terms of a Horn clause.
Rewrite rules are not destructive. Applying S1  S2 does
not remove S1, and it can still be used in other rewrite rules.

3.4 Projection Definition
So far we discussed Cedalion’s abstract syntax and dynamic
semantics. We did not (yet) discuss concrete syntax, since
this is only provided by Cedalion’s projectional editing,
which is based on its dynamic semantics.

Cedalion uses projectional editing to allow DSL de-
velopers to freely define the syntax of the DSL, regard-
less of the limitations of any parsing algorithm, charac-
ter set (e.g., ASCII), or even reading order (e.g., left to
right, top to bottom). DSL syntax can include variable font



sizes, styles and colors. A DSL may include special sym-
bols and even some interaction capabilities, such as col-
lapse/expand capabilities. Some of these capabilities (font
style and color, collapse/expand) are available as text edi-
tor features within IDEs for some programming languages.
However, in Cedalion, these features are part of the DSL’s
concrete syntax.

The concrete syntax of DSL concepts is determined by
their projection definitions. A projection definition is a state-
ment that define how a certain concept is displayed. This is
similar to a production rule in a grammar, only that instead
of parsing a string, here we render a visualization. A projec-
tion definition has the following form:

display Term ::Type as Projection (Projection definition)

where Term is a prototype of the concept we would like to
refer to (i.e., a compound term that belongs to that concept,
where all its arguments are variable references), Type is its
type (to be discussed in Section 3.5), and Projection is a term
describing how Term is to be visualized. Projection can use
any of Cedalion’s visualization primitives, providing labels,
symbols, layouts, styles and interactions. Cedalion provides
around twenty such primitives, and more can be added by
extending the Eclipse plug-in (each primitive is implemented
as a Java class, associated to the Cedalion code).

For example, the projection definition of a Horn clause is:

display (Head :-Body) ::statement
as h 〈〈Head ::pred〉〉 ":-" 〈〈Body ::pred〉〉

Here we use three kinds of visualization primitives: (1) a
horizontal layout, represented by a whitespace-separated
list, annotated with a tiny “h” to its top-left; (2) a label,
represented by a double quoted string; and (3) place-holders
for arguments, represented by double angle brackets, con-
taining each argument along with its type. Note how the
concept Head :-Body is depicted using its projection, even in
its own projection definition.

Projection definitions are not mandatory. Cedalion de-
fines Prolog-like default projections for concepts. A com-
pound term with no arguments is projected as a label con-
taining its identifier, without namespace prefixing (e.g., a
compound term of concept a is projected as “a”). A com-
pound term with arguments is projected as a label with its
identifier, followed by parentheses, containing a comma-
separated list of the arguments (e.g., concept a with argu-
ments 1 and 2 is projected as “a(1, 2)”). Projection defini-
tions are desired wherever the default rendering is unsatis-
factory. For example, the union operator discussed in Sec-
tion 2.1 can be defined without a projection definition, but
then it would appear in the form union(A,B). A projection
definition can do better than that, displaying it as A ∪B.

Cedalion’s projectional editing is implemented in Ceda-
lion. The Cedalion workbench queries a predicate defined

by the Cedalion program to know how to visualize a cer-
tain term. This predicate calls an internal predicate that pro-
vides user-defined projections. Projection definitions con-
tribute results to that predicate, using a rewrite rule.

In addition to providing Cedalion’s concrete syntax,
the projection definition mechanism provides hooks for
Cedalion code to provide checkers (predicate clauses that
examine the code that is being edited), and provide markers
(annotations on the code). Markers can, for example, report
errors associated with a certain term. This mechanism opens
the door for users to define static semantics for their DSLs,
and for Cedalion to define its type system.

3.5 Cedalion’s Type System
Cedalion is statically typed. Its type system is completely
implemented in Cedalion and runs as a set of checkers, from
within the projectional editor. As such, it can be extended by
Cedalion code.

Like most type systems for typed logic programming [26,
29], Cedalion’s type system is implicit with regard to logic
variables and explicit with regards to concepts. It infers the
type of logic variables, but requires that every concept be-
ing used shall have a type signature (stating the concept’s
type and the types of its arguments), although, in most cases,
that type signature can be inferred during editing. Type er-
rors are presented too during editing, well before execu-
tion/interpretation.

Unlike the traditional, conservative approach [22], taken
by most typed logic programming languages [26, 29], Ce-
dalion allows some of the type checking to be performed
at runtime. In a case where not all types are known during
editing, e.g., some types are parametric and conveyed by
variables, Cedalion’s type system insists that these variables
are to be exposed to the runtime environment. In such cases,
the runtime environment will ensure type safety, knowing
the actual types being used.

Typed Terms One important example of this is the typed
term. A typed term is a pair of the form:

Term ::Type (Typed term)

where Term is a term of type Type. This is a type safe way
to pass arguments regardless of their type, making their type
available for checking at runtime. In Section 3.4 we already
saw examples for typed terms in projection definitions.

Type Signatures Another example of where typed terms
are in use is type signatures. A type signature is a statement
that declares a new concept, by assigning types to itself and
its arguments. A type signature has the form:

declare Concept where ArgList (Signature)

where Concept is a typed term, containing the concept being
defined along with its type, and ArgList is a list of typed



terms, providing the types of the arguments. For example,
the type signature of a typed term is:

declare (Term ::Type) :: typedTerm
where Term ::Type, Type :: type

Note the difference between Type (a type variable, contain-
ing the Term’s type), and “type”—a concrete type, the type
of all Cedalion types. Another interesting example is the type
signature of the type signature statement. Since Cedalion’s
type system is implemented in Cedalion, its type signature
statement has a type signature. It looks like this:

declare (declare Concept where ArgList) ::statement
where Concept :: typedTerm,ArgList :: list (typedTerm)

3.6 Cedalion’s Tooling Support
The fact that Cedalion code is edited using a projectional
editor, allows productivity features to be integrated into the
language. Here we discuss some of them.

Context Menu Cedalion provides a context menu for ev-
ery term. Right clicking a term will cause a pop-up menu
to appear, listing operations relevant to this term. Selecting
this operation will execute it, performing an action such as
modifying code or displaying content in the view area (a
part of the Cedalion workbench made for displaying infor-
mation and interacting with the user). User code can con-
tribute context menu entries by using context menu entry
statements. These statements associate the caption of the en-
try with an action. They also specify a pattern for the term
to be matched, in a form of a typed term. This allows entries
to be specified for specific concepts, or specific types, thus
making the menu context-dependent.

Auto-completion Auto-completion is the feature that is
used the most when editing Cedalion code. When enter-
ing text in the text bar, the user can press a key combina-
tion (Control+Space) to get a list of suggestions. Cedalion
queries the collection of concepts that can be used in the
selected location, and finds ones which have aliases (ex-
plained next) starting with the string entered. The list is then
presented to the user for choosing the appropriate concept,
which is then inserted as a new term.

Aliases Aliases are strings associated with concepts. Each
concept has a “natural” alias, which is its internal identifier
(the name Cedalion uses internally, regardless of projection),
without namespace prefixing. Additional aliases can be de-
fined by the user. Cedalion also infers aliases in some cases
from projection definitions (e.g., when the projection is a
label, the content of the label is used as an alias for this con-
cept). Concepts and aliases have a many-to-many relation-
ship, where a single concept can have multiple aliases (e.g.,
its internal name and something based on its projection), and
several concepts can share the same alias. In the latter case,
disambiguation is done by choosing the desired entry from
the auto-completion list of choices.

Adapters An adapter of type T1 to type T2 is a concept of
type T2, which takes one argument of type T1, and seman-
tically acts as a proxy, adding no additional meaning to its
argument. Cedalion has a special declaration for declaring a
concept as an adapter. This allows Cedalion to reconcile con-
cepts of type T1 in the context where a concept of type T2 is
needed. Adapters allow Cedalion’s auto-completion to offer
concepts of type T1 in these cases, and when a type mis-
match between T1 and T2 is presented, Cedalion automati-
cally inserts the adapter to fix this error.

Definition Search Concepts are centric to the way Cedalion
code is programmed. Concepts are introduced in Cedalion
in both the DSL definition and the DSL code. To allow
Cedalion users to be able to understand the different con-
cepts and be able to track their definitions, Cedalion provides
a mechanism for searching concept definitions. When select-
ing a compound term, Cedalion’s context menu displays the
option “Show Definitions.” Selecting this option will dis-
play the full story behind the concept associated with the
selected term. This “story” includes all aliases assigned to
this concept, the type signature, projection definition and all
semantic definitions. The nature of the semantic definitions
for a concept depend on the concept type. For example, for
predicates, the semantic definition includes all clauses con-
tributing results to that predicate. A semantic definition of
a statement includes all rewrite rules translating this state-
ment into others. For a type, it includes all type signatures of
concepts of that type. The user can relate new defining state-
ments to concepts using “defines” statements. Each defining
statement is displayed along with the file name in which it
is defined. Clicking that definition will open that file, and
highlight the relevant definitions with a green background.

3.7 Implementation
Cedalion is implemented as an open source project [4], in
a pre-alpha maturity state. It is implemented as an Eclipse
plug-in, in Java (a little over 5K lines of code), Prolog (less
than 500 lines of code) and Cedalion (about 700 statements).

The Java code provides integration to Eclipse and to the
Prolog engine (SWI Prolog [35]), and provides visualization
and interaction capabilities, such as the Cedalion editor win-
dow, a collection of figures to display, context menu capabil-
ities, etc. The Java code does not have any knowledge of the
Cedalion programming language nor of its DSLs. It merely
provides the “physical” capabilities.

The Prolog code implements a logic engine, i.e., a soft-
ware module capable of storing facts and deduction rules,
and answering queries, supporting namespaces and rewrite
rules. To communicate with the part of Cedalion imple-
mented in Java, the Prolog part implements the server side of
that communication protocol. It also implements Cedalion’s
built-in predicates.

The Cedalion code implements Cedalion’s advanced fea-
tures, such as its projection editing, type system, and tooling



support, in what we call the bootstrap package. These fea-
tures are implemented in a pure logic fashion, as answers to
queries. The queries originate from the Java code through a
set of predicate we call the Cedalion Public Interface (CPI).
These predicates define the contract between the Java code
(the front-end) and the Cedalion code (the back-end). For
example, CPI contains a predicate for querying what needs
to be displayed in a certain segment of a source file. The
bootstrap package implements this predicate to consult the
projection definition of the term in that segment to provide
an answer. The concepts in the answer correspond to Java
classes implementing the actual visuals to be displayed. The
formulation of the CPI allows the front-end to be replaced by
a different implementation (e.g., one not based on Eclipse),
so long as it implements its side of the CPI.

4. Example: LOP with Cedalion
To demonstrate LOP with Cedalion we present in this section
a complete step-by-step example. The scope of the example
was deliberately narrowed down to allow us to provide the
complete source code, allowing the reader to extrapolate this
example to larger problems.

Consider the problem of providing free text queries in
websites of transportation carriers, such as train, bus, and air
operators. An example of a query may be to find the schedule
for trains “from Paris to Rome today.” The assumption is that
these queries, while being “free text,” are actually confined
to a finite (and relatively small) language, since they all
have the same elements: source, destination and time. In
this example, we shall build a parser for this language. Our
input is a list of tokens, provided by a smart lexical analyzer
(or scanner), which, for the simplicity of our example, we
assume is smart enough to understand date patterns and
names of places. For starters, our output will be Boolean,
indicating whether or not the list of tokens is a legal query.
Later in this example we will extend our code to provide
more informative output.

About Code Samples in this Paper Because Cedalion uses
projectional editing, displaying Cedalion code should be
done through its projection. For this reason we use the Ce-
dalion workbench’s built-in code snippet mechanism, which
allows us to save Cedalion code fragments into an image
files. For the purpose of this paper, we use numbered lists,
so that statements can be referred to from the text. We use
the numbering Statement n.m to reference the statement at
line m in Figure n.

4.1 Step 1: DSL Definition
Following the LOP approach, we do not resort to an ad-hoc
solution to this problem (i.e., implement a parsing algorithm
for train queries). Rather, we start with a wider angle, think-
ing of the class of problems this relates to. In this case, this is
a parsing problem. We can assume this is a context free lan-
guage, and therefore, can be solved in that scope. With LOP,

query ::= routeQuery timeQuery
| timeQuery ′,′ routeQuery
| routeQuery

routeQuery ::= ′from′ location ′to′ location
| ′to′ location ′from′ location

timeQuery ::= ′today′

| ′tomorrow′
| ′on′ date

Figure 5: Grammar for transportation queries

we always think of how to express the problem or its solution
in terms of the problem domain. A common way to express
syntax in the problem domain of context-free parsing is the
use of the Backus-Naur Form (BNF) [15]. With this form, we
can express the grammar for our query language (Figure 5).

This is obviously a simple language, and a real-life lan-
guage would be much bigger. However, it is large enough
so that implementing an ad-hoc parser for this language in
a general-purpose programming language is relatively hard.
We would like our parser implementation to be as similar as
possible to the grammar. This will make it concise and easy
to maintain. To make this happen, we implement the BNF
notation as a DSL in Cedalion.

In Figure 5, we can identify five constructs used to define
the grammar:

1. The use of a token (quoted strings, location, and date).

2. The use of a non-terminal symbol.

3. Pattern alternation (|).
4. Concatenation of two patterns (by placing a space be-

tween them).

5. A production rule (the ::= operator).

In Cedalion, we can avoid having special constructs for items
2 and 3, making our language smaller. The pattern alterna-
tion is given to us for free, by specifying several production
rules with the same symbol on their left hand side. This is
because statements in Cedalion are related through disjunc-
tion by default, each contributing its own solutions. We also
do not provide a construct for referring to a symbol, because
every symbol in Cedalion is a concept on its own merit. We
do, however, add a sixth construct:

6. ε, matching an empty string.

We do so for the completeness of our DSL and for making
it viable for other grammars as well, although for the task at
hand we could do without it.

4.2 Step 2: Implementing the DSL in Cedalion

Figure 6 provides the definition and implementations of
the four required constructs (6, 1, 4, and 5). Statement 6.1
through Statement 6.3 defines the ε pattern, matching an



Figure 6: Implementation of the BNF DSL in Cedalion

empty string. Statement 6.1 provides a type signature, defin-
ing it as a pattern with no arguments:

declare ε ::pattern (6.1)

Statement 6.2 provides the projection definition for ε, defin-
ing its representation as the Greek letter Epsilon whose Uni-
code is 949:

display ε ::pattern as ε
949

(6.2)

This projection definition on the right hand side of the “as”
in Statement 6.2 immediately affects the way Epsilon is
projected on the left hand side in Statement 6.2, as well as in
Statement 6.1 and everywhere else.

The blue words in these statements, as well as in the rest
of the code, highlight the top level of the statement. This
gives the reader a sense of what the statement is, and what
the arguments are.

Statement 6.3 defines the semantics of ε (thus implement-
ing it). It defines it as a condition for a state transition. We
can look at the problem of top-down parsing as a state transi-
tion problem, where the state represents our location on the
input, or alternatively, the list of tokens yet to be read. Our
initial state is therefore the full list of tokens, and our accept-
ing final state is an empty list. We say that text T matches
pattern p if there is a transition p from T to [] (an empty list).
We denote that as:

T ⇒
p
[]

The ε pattern provides transitions from each state to it-
self. Statement 6.3 indicates this, by providing a Prolog-like
clause:

Text ⇒
ε

Text :- true (6.3)

The “true” on the right hand side of the :- operator indicates
that Text ⇒

ε
Text is true without condition.

Statement 6.4 through Statement 6.7 define the reference
to a token. Once again, it starts with a type signature:

declare tToken ::pattern where Token :: token (6.4)

This time, this concept has one argument of type “token.”
Statement 6.5 provides a projection definition, presenting the
token with a tiny superscript “t” at its left:

display tToken ::pattern as h 1
2 “t” i 〈〈Token :: token〉〉 (6.5)

The right hand side of the “as” contains a compound visual,
consisting of a horizontal list (the list with the tiny “h” at
its left), containing two elements: a half size label (a label
visual inside a half size modifier) presenting the tiny “t,”
and to its right, a place holder for the token. The place holder
is indicated using double angle brackets, containing a typed
term. The tiny “i” indicates that Token is depicted in (green)
Italics in the projectional editor.

Statement 6.6 defines this construct as an adapter:

use tToken ::pattern as adapter for Token :: token (6.6)

In this case, our concept acts as a pattern while hosting a
token. Defining it as an adapter allows Cedalion to consider
tokens in the context of patters (e.g., when providing auto
complete options), automatically inserting this adapter.

Statement 6.7 defines the semantics of this pattern, as a
consumption of a matching token (assuming one exists):

[First Rest] ⇒
tFirst

Rest :- true (6.7)

Here too we use true as the condition, but the left hand side
term only matches origin states starting with this token.

Statement 6.8 through Statement 6.10 define the concate-
nation of patterns:

declareP1 P2 ::pattern whereP1 ::pattern, P2 ::pattern
(6.8)

Note that in Statement 6.9 we use a whitespace as the oper-
ator between the two patterns (recall item 4). While uncon-
ventional, this is possible in Cedalion, since it uses projec-
tional editing:

displayP1 P2 ::pattern
as h 〈〈P1 ::pattern〉〉 " " 〈〈P2 ::pattern〉〉 (6.9)

Statement 6.10 uses recursive conditions to define the tran-
sition based on a concatenation, building a transition from



Figure 7: Base definitions for the BNF DSL

Before to After if a path exists both from Before to Middle
and from Middle to After :

Before ⇒
P1 P2

After :- Before⇒
P1

Middle, Middle⇒
P2

After

(6.10)
Finally, Statement 6.11 through Statement 6.13 define the

production rule. A production rule is a Cedalion statement,
and as such, its semantics is provided using the rewrite rule
in Statement 6.13. This rewrite rule creates a transition over
the pattern at the left hand side of the ::= operator (Symbol),
if a transition exists for the pattern on the right hand side of
the operator (Pattern):

Symbol ::= Pattern 
Before ⇒

Symbol
After :- Before ⇒

Pattern
After (6.13)

The definitions in Figure 6 rely on pre-existing definitions
of the types pattern and token, and on the definition of the
transition predicate. Figure 7 provides these definitions. The
new things here include a vertical layout (indicated by the
tiny “v” and the vertical list) in Statement 7.4, and an alias
definition in Statement 7.5.

4.3 Step 3: Implementing the Parser
Now that we have defined (and implemented) our DSL, we
can turn to using it to implement our parser. Figure 8 shows
the implementation of the train schedule query parser in
our BNF DSL. It starts with declarations of the three token
types our parser will encounter: a word (Statements 8.1
through 8.4, indicated by quotes), a date (Statement 8.5) and
a location (Statements 8.6 and 8.7). Statements 8.3 and 8.4
defines “word” as an adapter to a string in both the contexts
of a token and a pattern, so that strings can be entered in
these contexts. Cedalion will then reconcile them by adding
this concept as an adapter.

The grammar is given in Statements 8.8 through 8.18. It
is similar to the one shown in Figure 5, with some differ-
ences. One difference we already mentioned is the fact that
we use separate production rules instead of using the | oper-
ator. We will need it this way later, when generating output.
Another difference is the fact that we provide type signa-
tures for the symbols (Statements 8.8, 8.12, and 8.15). They
allow Cedalion to validate the grammar, only based on the
type signatures we already provided in Figure 6, and to pro-
vide symbol names as options for auto completion. The last

Figure 8: Implementation of the train schedule query parser
in the BNF DSL

difference is the fact that tokens appear with a tiny “t” to
their left. We saw similar markings in projection definitions,
e.g., for vertical and horizontal layouts (tiny “v” and “h,” re-
spectively). This is more of a convention than a strict rule,
but in Cedalion we prefer having things visible. In this case,
we have an adapter (the token pattern) allowing a token to
be used as a pattern. The tiny “t” allows the user to either
select the adapter (by clicking the “t”), or to select the token
it wraps (by clicking it).

Statements 8.19 and 8.20 provide unit tests for our parser.
A Cedalion Unit Test construct takes a logic goal as argu-
ment, and marks it with an error marker if this goal fails. In
this case, we test that both the string “from Paris to Rome to-
day” (Statement 8.19), and “tomorrow, from Rome to Paris”
(Statement 8.20) are legal. Note that we provide the input
tokenized as the initial state, and the final state is an empty
list. We check for a single transition, on pattern query.



Figure 9: Definition of a DSL for querying the train schedule

Figure 10: Parser implementation with output

4.4 DSL Interoperability
We implemented a parser that allows us to know whether a
given list of tokens conforms to some context-free grammar.
However, for our imaginary Web application we would like
to do more. We would like to understand what the list of
tokens means. For this, we need some way to specify the
meaning of train schedule queries.

Figure 9 shows type signatures and projection definitions
for the constructs of a DSL for querying the train schedule
database. We do not provide the implementation of this DSL
here, as it relies on the way the actual train schedule is stored,
and is therefore beyond the scope of this example. We pur-
posely defined the projection of its constructs to resemble
English text, and for this reason there is a noticeable simi-
larity between some of the projection definitions in Figure 9
and the production rules in Figure 8. With that said, notice
that these definitions are independent of one another. They
merely describe the same problem.

We now wish to allow our parser to produce query terms
in the query DSL defined in Figure 9. Figure 10 shows
such a parser, as a refinement to the one we implemented

in Figure 8. We re-define our grammar symbols to take
arguments. These arguments are the query terms represented
by the text that was parsed by these symbols. On the right
hand side, these variables appear as logic variables, and they
are constructed into query terms on the left hand side. This
way, parsing some text will emit an equivalent query term.
The unit tests in Statements 10.12 and 10.13 show how
the query terms constructed by the parser are similar to the
original text. This is a good example of DSL interoperability,
where the BNF DSL and the query DSL are agnostic of each
other, but still can be used together, with no need for “glue
code” in some general-purpose language.

5. Validation: DSL for Bioinformatics
In this sections, we describe a larger case study to demon-
strate Cedalion’s usefulness. In this case study, we defined
in Cedalion a DSL that helped our colleagues at Technion
IIT’s Department of Biology specify a custom made DNA
microarrays for Protein Binding [2]. The outcome of their
DSL program was sent to production and used in a real ex-
periment in Biology research [1].



5.1 Brief Overview of the Problem Domain
In Biology research, the interaction between proteins and
DNA is studied extensively. Such interactions between DNA
and a special class of proteins called transcription fac-
tors (TF) regulates the transcription of genes encoded by
the DNA into RNA and eventually into other proteins [3].
Studying these interactions is important to the understand-
ing of physiology and disease processes. However, research-
ing them is far from trivial, due to the complexity of the
biological systems involved.

Traditionally, performing in vitro (in a test tube) exper-
imentation to test a theory about binding of a protein to
a DNA sequence was very expensive and time consuming,
since a different experiment was required for every DNA
sequence that was tested. Recent development in the field
introduced the Protein Binding Microarray (PBM) [2]. This
is a special kind of DNA microarray, a chip containing mi-
croscopic wells, each containing a different DNA sequence,
with multiple instances in each well (a PBM is a microarray
dedicated to binding proteins to DNA sequences). Perform-
ing experiments with a microarray allows one experiment
to be applied on multiple DNA sequences. Contemporary
arrays contain the order of 105 different sequences. Exper-
imentation is done by introducing a solution containing the
protein under test and possible supplements, such as fluores-
cent markers to the chip. The protein will bind to a specific
DNA sequences, other nonspecific interactions will be elim-
inated during the wash steps, such that the signal represents
only the binding of the TF to a specific DNA sequence. The
chip is then scanned using a visible-light scanner, and the flu-
orescent markers attached to either the protein or the DNA
are used to determine which sequences have been bound and
which have not. This approach speeds up experimentation
tremendously against traditional testing in test tubes, where
only one sequence could be tested at a time.

5.2 Problem Statement
The main enabler of this technique is the ability of manu-
facturers to produce the microarray, along with an order of
105 different sequences. This is thanks to a highly automated
production process. This possibility leaves the biologist with
the need to prescribe these sequences.

Our colleagues at Technion IIT have previously taken an
ad-hoc approach to this problem. They created a Java pro-
gram of about 500 lines-of-code, that provides a text file,
containing the desired sequences. This program was made
specifically to reflect a certain design, based on a certain bi-
ological hypothesis, targeted at a certain experiment. As the
research advances, hypotheses change and new microarray
designs require changes to that program.

This is where we proposed LOP and Cedalion. With Ce-
dalion we can define a DSL for defining microarray designs,
which will allow the generation of the sequence set. The ad-
vantage of using a DSL is that the DSL code resembles the

way the biologist thinks of the microarray design. This is
in contrast to the Java program, where the design is trans-
lated to a sequence of commands that produce the list of se-
quences. We are not naive as to think that a biologist with
no programming background would be comfortable imple-
menting such a design using our DSL. However, they would
be absolutely comfortable reviewing the DSL code to see
that it matches their needs, and even make changes to it.

5.3 Solution Overview
To address the problem of defining DNA microarrays, we
first consider a wider problem: defining DNA sequence sets.
A DNA microarray consists of different sections (experi-
ment, negative control, positive control, etc.), each is a set
of DNA sequences. We provide a DSL for specifying such
sets. It is used to specify each section in the DNA microar-
ray.

For each section in the microarray, the user needs to
specify three things:

1. the name of this section (for tracking);

2. the DNA sequence set to be used for this section; and

3. the number of sequences to be randomly selected from
this set. This will typically be the full size of the set in
experiment sections, and an arbitrary small number for
control sections.

Generating the microarray is done in two phases. First, use
Cedalion to construct files with the full sequence sets for
each section. The file name is derived from the microarray
name, the section name and the quantity (the number of
sequences to be selected). Then a Perl script (<30 lines
of code) performs the random selection and provides the
final sequences to be used in the microarray. The script
also formats the files in a way acceptable by the microarray
manufacturer.

Our choice of using a script here aligns with the overall
Cedalion philosophy. With this philosophy, a software so-
lution is divided into two parts: (1) the program logic, im-
plemented in Cedalion, preferably by making extensive use
of declarative DSLs; and (2) the program’s integration to
its environment, usually implemented in imperative general-
purpose languages. Much of Cedalion’s power comes from
the fact that it is declarative, with no side effects. For this
end, performing some action requires the involvement of
some other programming language being able to query Ce-
dalion programs. The idea is to keep the imperative part as
small as possible, as part of the DSL implementation and
agnostic of the DSL code.

In our case, we need to perform an action (the random
decimation of DNA sequences) which does not map well
into declarative terms. For this we provide a script. However,
this script is agnostic of the DSL code, that is, it has no
knowledge that we are dealing with DNA sequences.



The files created by the script can be uploaded to the DNA
microarray manufacturer’s website when placing an order.

5.4 The Challenge
The challenge in this case study is to provide a DSL that
will be intuitive and easy to use by non-programming bi-
ologists. We do not expect biologists to be able to build a
design from scratch, but we do expect them to be able to re-
view and maybe even modify existing designs. For that, the
language must be absolutely intuitive for them. It needs to be
declarative, concise, and most importantly, use the common
terms of the Bioinformatics world. To accomplish that, we
need our LOP environment to provide full freedom in defin-
ing this DSL, and not pose any syntactic or other restrictions
that would make this language unintuitive to biologists.

In addition, we had a very short window of opportunity
to complete the implementation. We had just one week from
the time our colleagues knew they needed to define a new
microarray design, until they had to submit the list of se-
quences to the manufacturer. This is due to the long pro-
duction time of the microarray itself (around one month). In
that time frame we needed to implement the DSL, the mi-
croarray generation mechanism, the decimation script and
help them define their microarray design. Failing to do so
would have resulted in our colleagues modifying their Java
program to reflect the new design, and using it to generate
the sequences.

5.5 A DSL for DNA Sequence Sets
We start by describing a DSL for defining sets of DNA se-
quences, and its implementation in Cedalion. While we de-
fine this DSL for the purpose of DNA microarray definition,
DNA sequence sets can be used in a variety of Bioinformat-
ics tasks, such as specifying search patterns for chromoso-
mal searches.

Sets in Cedalion Since our goal is to define sets, expres-
sions in our DSL all represent sets of DNA sequences. Ceda-
lion’s bootstrap package provides a “mini DSL” for handling
sets. it defines set(T ) as the type of sets where all elements
are of type T . As in common mathematical notation, testing
whether an element X is in set S, and enumerating over the
elements of a countable set is done using the ∈ operator. In
Cedalion, the ∈ operator is a predicate that can be used in
the context of logic programming. Cedalion code can define
new set constructs by contributing clauses to this predicate.
Due to the type system (Section 3.5) the element type must
be specified when using the ∈ operator. Testing whether el-
ement X of type T is in set S is therefore done as follows:

X ∈T S

For convenience, Cedalion’s “mini DSL” for sets also con-
tains a construct for defining new sets:

S
def
=

T

D

Figure 11: Definition of the A Nucleotide and Set

This will define set S of type set(T ) as equal to D. Here
too, we need to specify the element type for type safety.
We will use either of these constructs to define our DNA
sequence sets. In addition, this “mini DSL” defines concepts
such as set unification, intersection, set comprehensions, and
a singleton set.

Lists in Cedalion To represent sequences of nucleotides,
we use Cedalion lists. Lists are fundamental in Cedalion, as
they are in any logic programming language.

Nucleotides and Sequences DNA sequences are sequences
of nucleotides, marked with the letters A, C, G, and T. We
define the type Nucleotide to refer to them, and define the
four nucleotides as concepts of this type. Figure 11 demon-
strates this for the A nucleotide. Statement 11.1 provides the
definition of the Nucleotide type. For convenience, we use
here a single statement for both the type signature and the
projection definition. The same kind of statement is used in
Statement 11.2, to define “A” as a Nucleotide. Note that in
both statements we define atoms (i.e., concepts with no ar-
guments) but provide a projection definition, mapping it to
a label. We do so because we wish to display these concepts
differently then their internal representation. For example,
the nucleotide A is represented internally as a lower-case
“a,” to conform with the naming convention for concepts
in Cedalion. To conform with the common convention in
Bioinformatics, we need a capital “A,” and we resolve that
by assigning a projection. Similar definitions exist for C, G,
and T.

The building blocks of our DSL will be sets representing
a single sequence, containing a single nucleotide. Since we
have four nucleotides, only four such sets exist, one per
each nucleotide. For all practical purposes, these sets are
exchangeable with the nucleotide they are related to. We
therefore wish to denote them A, C, G, and T as well.
Statement 11.3 defines such a concept (for A). To the naked
eye, it looks just like the nucleotide A, however, its internal
name (visible by clicking it and looking at the text bar), is
different. Its type is different too—set of list of Nucleotide,
in contrast to just Nucleotide. Statement 11.4 provides the
meaning, defining it as a singleton set, containing a sequence
(list) with one element: the nucleotide A. Similar definitions
are present for C, G, and T.



Figure 12: Definition of the := operator for DNA sequence sets

Figure 13: Definitions of basic DNA sequence set definitions

Figure 14: Definition of some IUPAC codes

In Statement 11.4 we used the S
def
=

T

D statement to
provide meaning to a set. It was necessary to enter the type
because this concept is polymorphic. In our DSL, however,
we are going to define a lot of sets, all with the same ele-
ment type: list(Nucleotide). We therefore wish to hide the
type from the user, given that our users (biologists) are of-
ten unfamiliar with type systems, and adding this type (or
merely seeing it on the screen) may be a nuisance for them.
For this reason, we define the := operator, as a set assign-
ment, specifically defined for nucleotide sequences. Since it
always takes the same type (i.e., it is monomorphic), the type
does not need to appear (as it is inferred by its type signa-
ture). Figure 12 provides the definition of the := operator.

Single Nucleotide Sets The International Union of Pure
and Applied Chemistry (IUPAC) defines standard codes to
denote not only a single nucleotide, but also sets of possible
nucleotides.3 The most important one is N , representing any
of the four nucleotides. Figure 14 shows the definition of
three such codes, using the := operator defined in Figure 12,
and Cedalion’s standard set union operation.

Sequences We define the dot (.) operator to denote con-
catenation of two sets. X.Y denotes a set of sequences, such

3 http://www.bioinformatics.org/sms/iupac.html

that each such sequence can be seen as a concatenation of a
sequence in X and a sequence in Y . Formally we define:

X.Y = {s | x ∈ X, y ∈ Y, s is a concatenation of x and y}

Figure 13 show the definition of this operator in Cedalion.
Note the similarity between Statement 13.2 and the above
definition. Xn denotes concatenation of n elements of X ,
defined in Cedalion as a union of two sets: an empty se-
quence when n = 0, and an element of X.Xn−1 when
n > 0. For example, N3 is the set of all DNA sequences
of size 3.

With what we have so far we can define any set of se-
quences of a given size, restricting the nucleotides in each
position. For example, the sequence N3.A.T.N3 matches
all sequences of length 8, where positions 4 and 5 hold A
and T , respectively.

Binding We sometimes would like to express sets of se-
quences that have relations between parts of them. For ex-
ample, we would like to choose two nucleotides and then
repeat them twice, providing a sequence of size four. The
sequence N2.N2 will obviously not perform this task, since
each instance of N2 will be chosen independently. To fix
this we bind a part of the sequence to a name, and later use
this name in one or more places in the sequence. We use the
syntax:

Y = [X]

to denote a binding of an element in X to the name Y so Y
can be used later in the sequence. In the above example, the
formula: (

Y =
[
N2

])
.Y

will emit the correct result. The parentheses here are only for
convenience of showing that the = operator has precedence
over the . operator. In Cedalion the parentheses are optional,
as the projectional editing resolves the ambiguity problem.

http://www.bioinformatics.org/sms/iupac.html


Figure 15: Illustration of a double stranded DNA sequence

Domain-Specific Operators So far we discussed features
that relate to sequencing in general. We now add domain-
specific operators to the languages, ones that are unique to
the field of DNA sequences.

In living creatures, DNA appears double stranded (see
Figure 15). Given the sequence of one strand of DNA will
allow us to tell the sequence of the other strand, by following
two simple steps:

1. Replacing all A’s with T’s (and vice versa), and all C’s
with G’s (and vice versa). We call the resulting sequence
the conjugate of the original.

2. Reverse the order. This is because the two strands are
positioned in opposite directions.

We use the term complement to refer to the sequence of the
other strand, denoted Xcomp, where X is the original strand.

Due to symmetry, A double stranded DNA sequence can
be depicted by either strands. If we wish to specify a set
of double stranded DNA sequences, we need to make sure
that, for every sequence in the set, its complement is not in
the set. This is unless the sequence is its complement, i.e.,
when X = Xcomp (a palyndromial sequence).

To facilitate this, we introduce the restrict operator.
restrict(X) contains for each x ∈ X , either x or xcomp,
the lower of the two in lexicographic order.

5.6 Generating Microarray Designs
We defined (and implemented) a DSL for defining DNA se-
quence sets. Now we use them to generate microarray de-
signs. As stated in Section 5.3, we do so in two phases. First,
we generate files containing the full factorial of sequences
for each section of the microarray design. This is done from
within Cedalion. Then, a short Perl script decimates these
files, leaving only the ones to be used in the final microarray.

We define a microarray statement. This statement has no
meaning of its own, that is, it does not have a rewrite rule
associated with it. It only provides a place for defining mi-
croarray designs. A context menu entry associated with the
microarray statement facilitates its generation. The associ-
ated procedure generates a file for each section, calculating
the file name based on the name of the microarray name,
the section name and the quantity (the number of sequences

Figure 16: Implementation of our microarray example

desired after decimation). The Perl script uses the name to
generate a decimated file based on the specifications in the
microarray statement.

5.7 A DNA Microarray Design Example
Figure 16 shows an example of a microarray definition in
our DSL. This example is similar in many ways to the one
designed by our colleagues, which we do not provide here,
since this is still unpublished work on their part.

The microarray design, defined in Statement 16.9, defines
three groups: an experiment, and two control groups. They
all follow the same pattern, denoted by the fullSequence(X)
operator, defined in Statements 16.7 and 16.8, where X
is a set of sequences that defines the difference between
the different groups. The experiment tests ACGT , and the
control groups replace the C and G with other nucleotides
(the \ operator depicts set subtraction).

The fullSequence(X) operator defines a set of sequences,
containing two instances of feature(X), separated by spacers
(spacer1 on both ends, and spacer2 in the middle). The two
instances are set to be the same, by using binding.

feature(X), defined in Statements 16.5 and 16.6, repre-
sents a sequence of twelve nucleotides. The central four are
determined by X , wrapped by four nucleotides on each side.
Such an experiment is meant to find the combinations of
these nucleotides that best bind the protein in question. We
restrict the set of features, to avoid considering the same
double stranded sequence twice.

The spacers, defined in Statements 16.1 through 16.4 are
constant sequences, whose purpose is to place the “interest-
ing” features at the right distance from each other and from
the edges.

Generating the microarray design is done by selecting
“Generate Microarray Design” from the microarray’s con-
text menu. Generating the sequences for this example took



a little less than six minutes, about the same time it took to
generate the microarray design required by our colleagues.
This constructed the full factorial. The decimation (per-
formed by the Perl script) takes a few seconds.

6. Assessment and Discussion
In this section we assess our language-oriented approach to
LOP based on our own experience with implementing and
using Cedalion and based on the Bioinformatics case study
presented in Section 5. We revisit the properties set forth in
Section 2 as criteria for this assessment. In our assessment
we also consider the following additional DSLs that were
implemented in Cedalion. These were not presented here but
are available with the Cedalion distribution [4]:

• A general-purpose “DSL” for lazy-evaluation functional
programming, featuring the ability to define new expres-
sions (functions), Lambda abstractions and more.

• Two “domain-specific” DSLs for defining processes us-
ing CCS notation [21], and for testing their attributes ex-
pressed using HML [11, 12].

• Our DSL solution [24] to the challenge assignment
defined by the Language Workbench Competition of
2011 (LWC’11).

• An example of a software product line (SPL) in Cedalion
for calculator software [17].

6.1 Results of the Bioinformatics Case Study
In the Bioinformatics case study we were able to define
a DSL in terms the domain experts speak and understand.
With some assistance, our Biology colleagues were able to
specify with Cedalion the microarray they needed. In fact,
before submitting the list of sequences to the manufacturer,
they changed the design twice, to accommodate new insights
about the problem at hand. The DSL code expressing the
design was straightforward enough to allow them to make
these necessary modifications by themselves.

The implementation of the DSL took us about one day’s
work. The implementation of the first microarray design
took our colleagues about one hour, with our close assis-
tance. Each modification took them about one or two min-
utes. The execution of the design, i.e., the generation of
the sequences took approximately six minutes. This is in
contrast to their Java implementation, where generating se-
quences typically takes only a few seconds. However, since
we only need to generate a design once, one should take the
programming time (i.e., the time it takes to create or change
a design) into account. According to our colleagues, modify-
ing their Java code to reflect a new microarray design takes
them long minutes and even hours in some cases, relative
to the minute or two it took to change the DSL code. Tak-
ing that into account, the Cedalion implementation performs
much better.

The set of sequences produced by the Cedalion-based
DSL have been sent to the manufacturer to produce a mi-
croarray based on that design. As we are writing these lines,
our colleagues are using this microarray for an experiment.

Next we discuss how well Cedalion performed with re-
spect to the properties reviewed in Section 2.

6.2 DSL Definition (Freedom of Expression)
Syntactic Freedom Cedalion uses projectional editing to
provide this freedom, breaking away from any restriction
posed by a parsing algorithm, or even by the mere use of
ASCII text files. Projectional editing allows us to define the
syntax for our DSLs in a way that is intuitive for the subject
matter experts.

In the Bioinformatics case study in Section 5 we used
a notation that was intuitive for biologists. We were able to,
for example, use superscript (e.g., Xn) to indicate repetition.
If we were to use a parsed language (based on text files), we
would not be able to do so, and would need to use an operator
that is less intuitive to the domain experts. Since we based
our DSL on Cedalion’s “mini DSL” for sets, we could use set
operators such as ∪ in these expressions (recall it was used to
define N and other IUPAC codes as depicted in Figure 14).

In the train schedule example in Section 4 we used a
double arrow with text below it, to indicate transition. This
too could not have been achieved with a parsed language.

Semantic Freedom The diversity of our case studies show
that Cedalion DSLs can have diverse semantics. However,
the bigger challenge defined by this requirement is to be
able to control semantic analysis, and have control over what
is considered well-formed DSL code. The case study that
put this feature to the test was the LWC [24]. It required a
DSL for instances, where each instance conforms with an
entity defined by the entity DSL. We used Cedalion’s type
system to enforce this relationship, e.g., making sure there
is a conformance between instances and the entities they
are based on. The type system was not powerful enough to
enforce cardinality, so we added custom checkers for that
task.

6.3 Cost Effectiveness (Economic Freedom)
The most adequate case study to demonstrate DSL cost-
effective implementation and usage is the Bioinformatics
case study. Here we solved a real-life problem, one that
could have been solved in some other way. Estimating the
efforts of both ways can allow us to evaluate the cost-
effectiveness of using Cedalion for this purpose.

With everything in place, specifying a new design took
about one hour. Small modifications to that design took a
minute or two each. With the alternative approach, imple-
menting the Java program to generate the sequences took
about one day’s work, which is comparable with the amount
of time we spent setting up the first microarray design in
Cedalion. Cedalion’s advantage in this starts with the first



modification. It is difficult to assess how long such a mod-
ification would have taken for the Java implementation, but
it is safe to assume that it would have taken much longer
than the minute or two it took with Cedalion, taking into ac-
count that the logic for defining the design is spread among
approximately 500 lines of code. Changing this code would
probably require some level of debugging to achieve the de-
sired results.

6.4 DSL Interoperability (DSLs’ Freedom of
Association)

Cedalion supports DSL interoperability both semantically
and syntactically. Syntactically, it comes from the use of
projectional editing. Semantically, this ability is inherent
from the fact all DSL code is code in the same programming
language, Cedalion.

In the example in Section 4 we demonstrated seamless
integration of two mutually independent DSLs: a DSL for
parsing based on BNF, and a “business logic” DSL for
querying train schedule. They were joined on the DSL code,
with no need to modify any of their definitions to allow that.
In this integration they were joined both syntactically and
semantically.

The DNA sequence set DSL described in Section 5 was
based on another DSL, the set “mini DSL.” The definitions
of most of its concepts were actually made within that DSL,
and only few of them were implemented using logic pro-
gramming clauses. This makes the set operators natural in
our DSL, and indeed they were used seamlessly, as in Fig-
ure 14 (the ∪ operator) and Figure 16 (the \ operator).

6.5 Limitations and Threats to Validity
Cedalion presents a viable approach to LOP, and we have
shown that our prototyped implementation can be used in a
real-life setting to provide a desired outcome. However, we
have also witnessed limitations of the approach.

Performance Cedalion is a logic programming language.
The programmer enjoys features such as backtracking and
term unification without effort. However, these very features
of logic programming affect performance. Indeed, in our
case study in Section 5, running the Cedalion code took a
few minutes, while the Java implementation performing a
similar task needed only a few seconds.

However, there are techniques to overcome this limita-
tion. Cedalion can use a faster Prolog engine, which is ex-
pected to provide a nice speedup at very little cost. We can
also consider combining code generation techniques with
logic programming, as a speedup option for mature DSLs.
Investigation and implementation of speedup options are left
for future work.

Fault Tolerance Cedalion allows for user code to be exe-
cuted from within the Cedalion workbench, while the code
is being edited. This is a powerful tool, but may cause prob-
lems if that code contains bugs. A limitation of Cedalion is

its inability to withstand all user errors. For example, it is
not uncommon in Cedalion to reach non-termination. In such
cases, the editor crashes or gets stuck when editing a certain
piece of code.

Such problems cannot be avoided altogether. Instead, Ce-
dalion needs to be able to contain these problems. In some
cases (e.g., when an exception is thrown), this is easy. How-
ever, in some other cases (e.g., non-termination), identifying
the problem is hard, and treating it effectively is not easy. We
hope that as Cedalion matures we will find ways to address
these issues.

Threats to Validity A noticeable threat to validity is the
choice of Bioinformatics as a case study. One could claim
that this case study coincidentally maps well into Cedalion.
However, the variety of examples and other case studies
show Cedalion provides consistent result for numerous prob-
lem domains, which makes us confident that the results of
the case study in Section 5 are indeed representative.

7. Related Work
Cedalion is a host language for internal DSLs that is de-
signed to support flexible DSL syntax and semantics. In
comparison, traditional internal DSLs are relatively cost-
effective, highly interoperable, but are limited in their syntax
and semantics. Lisp and its dialects, for example, have very
flexible semantics. However, the syntax of Lisp-based DSLs
is usually limited to S-expressions. Implementing readers
can help customize the syntax for a single DSL, but does
not provide syntactic interoperability.

Most other host languages for internal DSLs are dynamic
languages and therefore do not provide static validation for
DSL code. However, there are exceptions to the rule, such as
typed Scheme [32] and typed Prolog [26], which both imple-
ment custom validation through their respective language’s
macro expansion mechanisms.

Language workbenches share the same goal as Cedalion.
The most notable language workbench include the Meta
Programming System (MPS) [5], the Intentional Domain
Workbench (IDW) [28], and Spoofax [14]. Targeting exter-
nal DSLs, they mitigate some of their drawbacks by doing
one thing similar to internal DSLs: provide a common rep-
resentation for all DSLs. This common representation often
refers to the abstract syntax tree (AST) of the DSL. Although
different DSLs use different language constructs, within one
language workbench they all have a common notion of what
a “language construct” is. These are called concepts in MPS,
as in Cedalion; and intentions in IDW.

This common representation allows the integration of an
AST segment for code in one DSL, into the AST of code
in another DSL. For this to happen, the DSLs need to agree
on some interface (beyond the common representation). The
common representation allows semantic interoperability of
DSLs. However, DSL interoperability also requires interop-
erability on the syntactic level (syntactic interoperability).



Language workbenches support that with either scannerless-
generalized parsing or projectional editing.

Scannerless generalized LR (SGLR) parsing [33] is an ap-
proach that allows parsing of text consisting of a combina-
tion of languages (DSLs), when each is defined by a set of
production rules (context free grammar), and a set of dis-
ambiguation rules (e.g., precedence and associativity). The
parser combines all rules (production and disambiguation)
from all languages into one grammar. There are no guaran-
tees for it being unambiguous, not to mention belonging to
a specific grammar class, such as LALR(1). However, the
generalized LR parsing algorithm can use it to parse the file
in polynomial time. Ambiguities in parsing the user code are
reported as errors. They are then taken care of by either mod-
ifying the DSL code (e.g., by placing parentheses or alike to
state the structure more explicitly), or by adding disambigua-
tion rules to one of the DSLs. This approach is implemented
in the Spoofax [14] language workbench.

Projectional editing [8] is an approach that addresses syn-
tactic interoperability from a different angle. Instead of im-
proving the parsing algorithms to meet the challenges of
syntactic interoperability, projectional editing takes the ap-
proach of avoiding parsing altogether. In contrast to the
traditional approach to programming languages, where the
code is being edited in a text editor, saved to a text file,
and then parsed to provide a volatile AST, with projec-
tional editing the AST is persistent (mostly referred to as the
model), and is being edited using a dedicated editor, edit-
ing it through a projection to a view. The projection here
is analogous to the controller in the model-view-controller
(MVC) architecture. The main difference between projec-
tional editing and traditional MVC is in the fact that here
the controller (the projection) is defined per-DSL. The most
notable projectional language workbenches include MPS [5]
and the IDW [28].

Cedalion uses projectional editing for internal DSLs. To
our knowledge, this combination has not been tried before.
Combining internal DSLs with SGLR parsing has not been
tried either, and is a topic for future work.

8. Conclusion
LOP is a paradigm that has been recently attracting more at-
tention. So far it has not been widely adopted in practice, due
to the limitations of traditional implementation approaches,
namely internal and external DSLs. In a more recent ap-
proach, language workbenches offer a promising direction
in fighting these limitations, by giving external DSLs a com-
mon representation, a feature borrowed from internal DSLs.

In this paper we introduce a novel approach to LOP
and an alternative to language workbenches. In contrast
to language workbenches, we take internal DSLs and pro-
vide them with language workbench features, to make them
closer to external DSLs. We introduced Cedalion, an im-
plementation of this approach, as a proof of concept. As

evidence that this approach provides a viable alternative to
language workbenches, with some trade-offs, we present
small examples and a larger case study showing usage of
Cedalion to solve a real life problem.

In that case study, a Cedalion-based DSL was success-
fully used to by biologists in designing a DNA microarray
for molecular Biology research. The most glaring advan-
tages of doing so were the readability and the ease of change
of the design. The most notable disadvantage was the pro-
cessing time. This is not a big problem as long as we are
at the scale of minutes. When considering the total time it
took to generate the sequences, including the code modifi-
cation time, the Cedalion-based approach showed a signifi-
cant advantage over the traditional approach. This case study
demonstrates how cost-effective LOP can be with our ap-
proach.

The Cedalion Eclipse plug-in is implemented as an open
source project and publicly available [4].
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