Cedalion — A Language Oriented Programming Language
(Extended Abstract)*

David H. Lorenz

Boaz Rosenan

The Open University of Israel

Abstract

Implementations of language oriented program-
ming (LOP) are typically either language work-
benches, which facilitate the development of exter-
nal domain specific languages (DSLs) with projec-
tional editors, or host languages for internal DSLs
that are parsed. In this work, we present Cedalio—
a novel approach to LOP, along with a prototyped
programming language and workbench implement-
ing our approach, which uses internal DSLs in con-
junction with projectional editing. To the best of
our knowledge, Cedalion is the first language work-
bench to implemented such an approach.

1 Introduction

Language Oriented Programming (LOP) is a
paradigm that puts the programming language at
the center of the software development process.
LOP focuses on the use of domain specific languages
(DSLs). The LOP software development process
consists of three parts: a definition of a DSL or
several interoperable DSLs; the implementation of
these DSLs by means of interpreters, translators
or compilers; and the development of the software
using these DSLs [11, 1, 2].

LOP has several advantages, directly derived
from use of DSLs: (1) Separation of concerns: The
declarative design (handled by the DSL code) is de-
coupled from the imperative implementation (han-
dled by the DSL implementation) of the applica-
tion. (2) Maintainability: Programming in DSLs
reduce the application code size. (3) Portability:

*Research supported in part by the Israel Science Foun-
dation (ISF) under grant No. 926/08.

Targeting a new architecture can be done by re-
implementing the DSL only, without modifying the
application code. (4) Reusability: The language
implementation can be used for other applications
within the same domain.

However, these advantages come at a cost: the
cost of defining and implementing the DSLs; the
cost of training developers to use them; the cost of
developing language-specific tools to support devel-
opment (or alternatively, the loss of productivity
in their absence); and the loss of runtime perfor-
mance in comparison with equivalent code written
and fine-tuned in a lower-level general-purpose lan-
guage.

This cost depends on how DSLs are imple-
mented. LOP is typically realized by using either
internal DSLs or external DSLs. Internal DSLs
(also called embedded DSLs [6]) are DSLs imple-
mented as a set of definitions in a general-purpose
programming language, called the host language,
e.g., LISP (and its dialects), Smalltalk, Haskell,
Ruby, etc. FEaternal DSLs are DSLs implemented
using interpreters, translators or compilers, writ-
ten in some other language, and are thus external
to the language in which they are defined.

The cost of developing external DSLs often ren-
ders LOP impractical, unless supported by Lan-
guage Workbenches. Language Workbenches are
integrated development environments (IDEs) de-
signed to facilitate the LOP process [2], focusing
on external DSLs. They provide tools for design-
ing DSLs, implementing them (as compilers, trans-
lators or interpreters) and developing applications
using these DSLs. Language workbenches ease the
task of defining a DSL, and support the creation of
dedicated editors, often with rich tooling for that
DSL, at very little cost. This helps reduce the cost

of using LOP, thus making it a viable alternative
to conventional programming paradigms.

Existing implementations of language work-
benches for LOP use projectional editors to facil-
itate the development of external DSLs. Projec-
tional editors are editors that modify the model
through a projection to a view [3]. Projectional
editors allow modifications to the model which are
visualized as changes to the view. Notable language
workbenches include Jetbrains’ MPS [1], the Inten-
tional Software Workbench [9] and MetaEdit+ [10].

Contribution In this work, we present a novel
approach to LOP that uses projectional editors to
facilitate the development of internal DSLs. To
the best of our knowledge, no work has yet been
reported on projectional editing for internal DSLs.
The closest work we know of is ModelTalk [5, 4],
which provides a language workbench with rich
tooling for internal DSLs. However, ModelTalk
does not, provide projectional editing. Rather, the
model is edited directly as text.

Internal DSLs reuse the host language’s inter-
preter or compiler. This makes their implemen-
tation concise, letting the DSL developer focus
mainly on the semantics of the DSL. All DSLs in-
ternal to a certain host language enjoy symbolic in-
tegration [2] to the host language, i.e., the ability to
used symbols of the host language in the DSL and
vice versa. Unlike external DSLs, where the entire
DSL implementation must rely on other (“prior”
or pre-existing) languages, with internal DSLs con-
structs can be defined incrementally, one on top of
the other, and even recursively, defining a certain
construct in terms of itself. This makes the DSL
implementation easier to build and maintain.

On the other hand, external DSLs enjoy full free-
dom in the definition of their syntax and semantics
(limited only by computability and complexity), in
contrast to internal DSLs, which are limited by the
syntax and semantics of the host language. A good
host language allows very little restrictions on the
DSL semantics (i.e. provide good semantic exten-
sibility), but the syntactic restrictions are unavoid-
able, due to the limitations of parsing.

DSLs using projectional editing have the advan-
tage of not being bound by the limitations of pars-
ing. Even if the language is mostly textual (as with
MPS or Intentional Software), its syntax does not

S::=aSb
S

Figure 1: A simple grammar

have to meet restrictions paused by practical pars-
ing algorithms such as LALR or LL(k). This is
extremely important when using several DSLs in
a single source file. Even if every DSL is by it-
self within the desired class (e.g. LALR or LL(k)),
there is no way to guarantee that the fusion of the
grammars required to parse the combined source
file will still be in that class, or even unambigu-
ous. On the other hand, when using projectional
editing, parsing does not take place and grammar
classes are irrelevant. Inambiguity is guaranteed by
the model, using unique node types to depict differ-
ent constructs in different languages. Even if two
constructs happen to have similar projections, they
are still different deep down. In addition, even for a
DSL that is mostly textual (such as one developed
in MPS), the syntax is not limited to a stream of
characters. Colors, symbols, font styles and sizes
can be used as part of the projected syntax, thus
improving expressiveness.

Outline In section 2 we will demonstrate how
easily a DSL can be defined over a host language
such as Prolog. In section 3 we will introduce
Cedalion, our programming language and work-
bench built around it. In section 4 we will discuss
Cedalion and compare it to Prolog, and in section 5
we will draw our conclusions.

2 DMotivating Example

To get a sense of the ease of defining internal DSLs,
we provide a short example DSL example. We use
Prolog as the host language. Prolog is not well
known as a potential host for internal DSLs, but
it is well suited for the job [7]. In our example,
we shall define a DSL for implementing recursive-
descent parsers based on BNF grammars. For illus-
trative purposes and as a test case for our DSL, we
consider the simple language defined by the gram-
mar in Figure 1.

DSLs are designed to provide the highest possible

level of abstraction when approaching a problem.
For this reason we wish our DSL code to look as
similar as possible to its specifications (Figure 1).
Figure 2 provides such code, using Prolog’s syntax.

si:=[a],

i=[a [b].
si=1].

S,

Figure 2: Parser implementation using the DSL

Now all that is left to do is to make these spec-
ifications executable. Figure 3 shows how this can
be done.

:— op (1100, xfx, ’::=").
parse ([], X, X).

parse ([T], [T|L], L).
parse ((P1,P2), X, Y) :—

parse (P1, X, X1),

parse (P2, X1, Y).
parse(P, X, Y) :—

P s Q)

parse(Q, X, Y).

Figure 3: BNF DSL Definition

The first line defines the BNF ::= operator syn-
tactically, allowing the Prolog parser to parse the
code in Figure 2. It is followed by four clauses
defining the parse predicate, each defining a single
construct in our language. The first clause defines
an empty list, depicting empty input. The second
defines a list with one element, depicting a termi-
nal. It is followed by a definition of the comma
operator, depicting concatenation, followed by a se-
mantic definition of the ::= operator. This last def-
inition is not a definition of the ::= predicate in the
Prolog sense. It is a definition of its meaning made
by using it (the definition of the predicate itself is
given in Figure 2). It could be read:

P::=Q ~ parse(P, X, Y):-parse(Q, X,Y)

meaning that every clause of the form P:=Q
can be replaced by a clause of the form
parse(P, X,Y)-parse(Q,X,Y). With both the
DSL definition and code in place, the goal
parse(s,[a,a,b,b],[]) will succeed, while the goal
parse(s,[a,a,a,b,b],[]) will fail.

Fle Edit Navigate Search Project Run Window Help

B0 Q| & @G| S @ @~ 5 [@ava

o |Aprocedureced | A fleced | A ediced |4 524 projection.ced | A regex.ced

=0

e B =] %

« pattem : type © [|
Text : list (string) , Residue : list (string)]
« empty = pattern < []
« parse (empty , X, ¥) -

true
o' C':pattem o [O sting |
o' C"z pattem » " [label (') , italic (vis (€' string)), label ()]
eparse('A’, e 4,8)

B

true
« P1.P2: pattem < [P :: pattern , P2 : pattem]
« P1. P2 patten » " [vis (P/ = pattern) , label (.), vis (P2 = pattern)]
. Text , Residue) :-

nt < [5y Fattern :: pattem |

o Symibol := Pattern :: statement - " [vis (5)
* Symbol ;= Patfern - parse (

parse (

ttern) | label (=) , vis (Pattern = pattem) |
, Text , Residne) :-

due)

o g pattern © []
esu='a'.s.'b"

o 5= empty

s B 49 e B

Figure 4: A Screenshot of the Cedalion Workbench

3 LOP with Cedalion

We introduce Cedalion, a logic programming lan-
guage, designed specifically as an LOP platform
for developing and using internal DSLs in conjunc-
tion with projectional editing. The choice of logic
programming was done due to its clean declara-
tive nature, with features such as pattern match-
ing and backtracking making it highly expressive.
However, similar results can be achieved by using
projectional editing in conjunction with other pro-
gramming paradigms.

We implemented an IDE for Cedalion develop-
ment as an Eclipse plug-in. The Cedalion Work-
bench acts as the projectional editor for Cedalion
code. Figure 4 shows a screenshot of the work-
bench, showing an implementation of a DSL simi-
lar to the one defined in Figure 3. Note that this
code cannot be edited directly as text.

The definition is longer then the one in Prolog, as
it defines a signature for all new constructs (using
the < operator), and defines projections for some
of them (using the — operator). The three last
lines at the bottom of the screenshot are the im-
plementation of the grammar in Figure 1 using the
DSL defined above it. Apart from the two produc-
tion rules, it also contains a signature definition for
s, defining it as a pattern. Note that placing DSL
code in the same source file as a the DSL definition
is usually only possible for internal DSLs.

Cedalion is statically typed. It uses a Hindley-
Milner [8] type inference, adjusted for logic pro-
gramming in support for internal DSLs. Type sig-
natures need to be defined explicitly for each con-
cept, but type inference helps the user add them,
often with a single click. The type system enforces
the DSL schema and guides the user in writing cor-
rect DSL code. For example, hovering the mouse
over logic variables while editing the code in Fig-
ure 4 will emit a tooltip depicting the variable’s
type, as inferred by the type system. When the sys-
tem detects a type violation, a red rectangle with
an error icon at its left is placed around the loca-
tion of the error, and a tooltip depicts the nature
of the error. Double clicking the icon displays a
list of possible fixes (if any). Double clicking a sug-
gested fix modifies the code and hopefully fixes the
problem.

Cedalion allows for DSLs to be defined layer by
layer. It allows the definition of higher levels of
abstraction to “stand on the shoulders” of all the
abstractions made until that point, hence its name.
Due to space limitations, we do not include more
screenshots here.

4 Discussion

Implementing projectional editing on top of
Cedalion rather than directly on top of the Prolog
semantics has two major benefits. The first benefit
is the fact Cedalion is statically type whereas Pro-
log is dynamically typed. This means that there is
no notion in Prolog of a schema for the DSLs, and
no way to statically validate the DSL code, or to
guide the developer in writing correct DSL code.
Misspelled or misplaced DSL construct would re-
sult in unexpected behavior of the program (typ-
ically failure of a goal where success is expected),
and finding the reason will typically require debug-
ging. Cedalion’s type system provides such enforce-
ment statically.

The second benefit of Cedalion is its declarative
versus Prolog’s imperative behavior. Prolog allows
cuts and side-effects. Cedalion does not, making it
a pure declarative language.

Cedalion also has rewrite-rules, statements of the
form S; ~» Sy, which are a special construct made
to depict language extension. They are comparable
with Horn clauses (statements of the form H:-B),

but are more restricted. In the example in figure 4
we used a rewrite rule similar to the pseudo-code
at the end of section 2.

5 Conclusions

In this paper, we described Cedalion, a program-
ming language designed as a platform for LOP. We
show how easily DSLs can be defined in Cedalion
and how expressive they can be. Cedalion is a
programming language and workbench designed to
support LOP. As such, it is designed to serve as a
host for internal DSLs. The choice of projectional
editing in Cedalion avoids the limitations of parsed
languages, especially when using several DSLs to-
gether. To our knowledge, Cedalion is the first to
illustrate a programming language that can host
internal projected DSLs. For illustrative purposes,
we chose logic programming as the host paradigm,
on top of which Cedalion can define DSLs. But
the approach is applicable to other programming
paradigms.

References

[1] S. Dmitriev. Language oriented programming:
The next programming paradigm. JetBrains on-
Board, 1(2), 2005.

[2] M. Fowler. Language workbenches: The killer-
app for domain specific languages. Accessed on-
line from: hitp://www. martinfowler. com/arti-
cles/language Workbench. hitml, 2005.

[3] M. Fowler. MF Bliki: ProjectionalEditing. Ac-
cessed online from: http://martinfowler. com/b-
liki/Projectional Editing. html, 2008.

[4] Atzmon Hen-Tov, David H. Lorenz, and Lior
Schachter. ModelTalk: A framework for develop-
ing domain specific executable models. In the 8"
OOPSLA Workshop on Domain-Specific Modeling,
pages 45-51, Nashville, TN, October 19-20 2008.
CoRR, abs/0906.3423:(2009).

[5] Atzmon Hen-Tov, David H. Lorenz, and Lior
Schachter. ModelTalk: A framework for devel-
oping domain specific executable models. CoRR,
abs/0906.3423, 2009.

[6] P. Hudak. Building domain-specific embedded
languages. ACM Computing Surveys (CSUR),
28(4es), 1996.

[7]

(8]

[9]

[10]

[11]

T. Menzies. DSLs: A Logical Approach. Ac-
cessed online from: hitp://courses. ece. ubc.
ca/571f/index. html, 2001.

R. Milner. A theory of type polymorphism in pro-
gramming. J. Comput. Syst. Sci., 17(3):348-375,
1978.

C. Simonyi, M. Christerson, and S. Clifford.
Intentional software. ACM SIGPLAN Notices,
41(10):464, 2006.

J.P. Tolvanen and S. Kelly. MetaEdit+: defin-
ing and using integrated domain-specific modeling
languages. In Proceeding of the 24th ACM SIG-
PLAN conference companion on Object oriented

programming systems languages and applications,
pages 819-820. ACM, 2009.

M.P. Ward. Language-oriented programming.
Software-Concepts and Tools, 15(4):147-161, 1994.

