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Language Oriented Programming (LOP):
 Rethinking Software Development

● Traditional Thinking

– Designing our software 
for a programming language.

● New Thinking

– Design (domain specific) programming 
languages for our software.



  

LOP: Middle Out
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DSL State of the Art

● External DSLs
– Implemented as compilers/interpreters.

● Internal DSLs
– Implemented as libraries in a host language.

● Language Workbenches
– IDEs for developing and using external DSLs.

What makes one approach better then the other?



  

DSL “Bill of Rights”

•Freedom of Expression
• Syntactic
• Semantic

•Economic Freedom
• Cost effective Implementation
• Cost effective Usage

•Freedom of Assembly
• DSL Interoperability
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Cedalion: A Language Oriented 
Programming Language

● A programming language designed for LOP
– Designed as a host for internal DSLs.

● Extensible, compositional syntax
– Through projectional editing.

● Extensible semantics
– Through logic programming.

Cedalion Website:
http://cedalion.sf.net

Cedalion Website:
http://cedalion.sf.net



  

Cedalion Language Overview

● Syntax
– Structure (abstract syntax)

– Default Projection

– Projection Definition

● Semantics
– Type System

– Logic Programming

– DSLs in Cedalion



  

Abstract Syntax

● The AST of a Cedalion program is a term.
● A term can be:

– A number.

– A string.

– A logic variable.

– A compound term.

● A compound term has a name (ID), and zero or 
more arguments, which are terms.



  

Projectional Editing

● Cedalion uses projectional editing

– Instead of parsing text to AST, AST is 
projected as text.

● Cedalion's syntax

– Includes font style, color, layout and 
special symbols.

– Supports ambiguities.



  

The Cedalion Workbench

Last chance to see our demo:
Cedalion 101: I Want My DSL Now!

Thu 1:00-1:45 pm – Galleria 2



  

Projecting Terms

Cedalion provides rules for projecting terms.
● Strings: Depicted in magenta.
● Numbers: Depicted as decimals.
● Logic variables: Depicted in green italics.
● Compoun terms: Defined by the user...



  

Projection Definition

● The projection of compound terms can be 
customized using projection definitions.

● Such definitions tell Cedalion how to visualize 
some kind of compound term (concept).

The concept Its type

horizontal layout
A place holder for

the first argument
A place holder for the
second argumentThe label “+”

display plus(A, B)::expr(number)
as h ≪A::expr(number)≫ “+” ≪B::expr(number)≫



  

Projection Definition

● The projection of compound terms can be 
customized using projection definitions.

● Such definitions tell Cedalion how to visualize 
some kind of compound term (concept).

display A + B ::expr(number)
as h ≪A::expr(number)≫ “+” ≪B::expr(number)≫



  

Cedalion's Semantics

● Static Semantics:
– Checkers define domain specific validity rules.

– Cedalion's type system is also implemented as 
a set of checkers.

● Dynamic Semantics:
– Logic programming.



  

Cedalion's Type System

● Concepts must be declared with a type 
signature.

● Type inference is used to infer the types of 
variables.

A typed
concept

Typed arguments

declare A + B ::expr(number)
where A::expr(number), B::expr(number)



  

Cedalion's Dynamic Semantics

● Cedalion is a logic programming language.
● A Cedalion program consists of a set of 

statements, which can be:
– Deduction rules

– Rewrite rules

– Statements that evaluate to deduction rules 
through rewrite rules.

● A Cedalion program is evaluated by querying 
predicates.  Predicates are defined using 
deduction rules.



  

Deduction Rules

● Deduction rules come from Prolog.
● They have the form: Head :- Body.

– Head is a compound term of the predicate we 
define.

– Body is a goal, consisting of a conjunction of 
predicate calls.

A+B evaluates 
to V

If A evaluates to A'
and B evalueates to B'

And V is A'+B'

if

V  numberA + B :-
A' number A,
B' number B,
plus(A', B', V)



  

Rewrite Rules

● Rewrite rules transform user-defined statements to 
deduction rules.

● They take the form: S
1
 ~> S

2
 where:

– S
1
 is a pattern matching the defined statement.

– S
2
 is matching the statement S

1
 is equivalent to.

● A Cedalion statement has a meaning if there is a 
sequence of rewrite rules translating it to at least one 
deduction rule.

This

Implies That

T Expr ≝ Def ~> V  TExpr :-
V T Def



  

Defining a DSL in Cedalion

● Abstract syntax
– Concept declarations.

● Concrete syntax
– Projection definitions.

● Semantics
– Rewrite rules, deduction rules and other 

statements.



  

Case Study: DNA Microarray Design

● Biologists use customized DNA 
microarrays in research.

● Each microarray has contains 
O(105) unique sequences.

● We provided a DSL for microarray 
design.

● This DSL was used by our 
colleagues at the Technion IIT to 
design a real life DNA microarray.

This case study is joint work with
Itai Beno and Tali E. Haran,

Department of Biology,
Technion – Isreal Institute of Technology



  

Case Study Results

● The DSL was intuitive enough to allow our 
colleagues (biologists) to understand and to 
modify designs.

● Cost Effective:

– DSL implementation: 1 day.
– Initial design: 1 hour.
– Each modification: 1-2 minutes.
– Generating the microarray: ~6 minutes.

● DSL for expressing DNA microarray designs, 
interoperable with other DSLs.



  

Additional Examples and
Case Studies

● Train Schedule Example (full source-code), in 
our paper.

● Functional Programming.
● Process Calculus (CCS) + Modal Logic (HML).
● Language Workbench Competition  of 2011 

(LWC11) submission.
● A calculator product-line, comparison with MPS 

[Lorenz and Rosenan, 2011].
All source-code can be found on the 
Cedalion source-code repository, at 

http://cedalion.sf.net



  

Related Work

● Language Oriented Programming

– [Ward, 1994]  Language-oriented programming. Software-
Concepts and Tools, 15(4):147–161, 1994

– [Fowler, 2005]  Language workbenches: The killer-app for 
domain specific languages. 2005. 

● Language Workbenches

– [Dmitriev, 2004]  Language oriented programming: The next 
programming paradigm. JetBrains onBoard, 1(2), 2004.

– [Simonyi, Christerson, and Clifford, 2006]  Intentional 
software. ACM SIGPLAN Notices, 41(10):451–464, 2006.

● Internal DSLs

– [Hudak, 1996]  Building domain-specific embedded 
languages. ACM Computing Surveys (CSUR), 28(4es), 
1996.



  

Conclusion
● Cedalion presents a novel approach to LOP

– DSL user
● You can insist on using your preferred 

notation.
– DSL designer

● DSLs can be cost effective.
– DSL tool developer

● Internal DSLs form a better stepping stone 
than external DSLs.

● Future Work

– Formal semantics for Cedalion.

– The next big step: Cedalion for web applications.



  

Boaz Rosenan
David H. Lorenz

Dept. of Computer Science
The Open University of Israel

brosenan@cslab.openu.ac.il
http://cedalion.sf.net

Thank You!

http://cedalion.sf.net/
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