

Boaz Rosenan
Dept. of Mathematics and Computer Science

The Open University of Israel

Joint Work With:

David H. Lorenz

Cedalion: A Language for
Language Oriented Programming

Language Oriented Programming (LOP):
 Rethinking Software Development

● Traditional Thinking

– Designing our software
for a programming language.

● New Thinking

– Design (domain specific) programming
languages for our software.

LOP: Middle Out

Concise

Expressive

Reusable
DSL Implementation

DSL Definition

Sw. Implementation

DSL State of the Art

● External DSLs
– Implemented as compilers/interpreters.

● Internal DSLs
– Implemented as libraries in a host language.

● Language Workbenches
– IDEs for developing and using external DSLs.

What makes one approach better then the other?

DSL “Bill of Rights”

•Freedom of Expression
• Syntactic
• Semantic

•Economic Freedom
• Cost effective Implementation
• Cost effective Usage

•Freedom of Assembly
• DSL Interoperability

Comparison of Approaches

External
DSLs

Freedom in
Definition
Cost effective
Implementation
Cost effective
Usage
DSL
Interoperability

Comparison of Approaches

External
DSLs

Internal
DSLs

Freedom in
Definition
Cost effective
Implementation
Cost effective
Usage
DSL
Interoperability

Comparison of Approaches

External
DSLs

Internal
DSLs

Language
Workbenches

Freedom in
Definition
Cost effective
Implementation
Cost effective
Usage
DSL
Interoperability

Comparison of Approaches

External
DSLs

Internal
DSLs

Language
Workbenches

Freedom in
Definition
Cost effective
Implementation
Cost effective
Usage
DSL
Interoperability

Comparison of Approaches

External
DSLs

Internal
DSLs

Language
Workbenches

Cedalion

Freedom in
Definition
Cost effective
Implementation
Cost effective
Usage
DSL
Interoperability

Cedalion: A Language Oriented
Programming Language

● A programming language designed for LOP
– Designed as a host for internal DSLs.

● Extensible, compositional syntax
– Through projectional editing.

● Extensible semantics
– Through logic programming.

Cedalion Website:
http://cedalion.sf.net

Cedalion Website:
http://cedalion.sf.net

Cedalion Language Overview

● Syntax
– Structure (abstract syntax)

– Default Projection

– Projection Definition

● Semantics
– Type System

– Logic Programming

– DSLs in Cedalion

Abstract Syntax

● The AST of a Cedalion program is a term.
● A term can be:

– A number.

– A string.

– A logic variable.

– A compound term.

● A compound term has a name (ID), and zero or
more arguments, which are terms.

Projectional Editing

● Cedalion uses projectional editing

– Instead of parsing text to AST, AST is
projected as text.

● Cedalion's syntax

– Includes font style, color, layout and
special symbols.

– Supports ambiguities.

The Cedalion Workbench

Last chance to see our demo:
Cedalion 101: I Want My DSL Now!

Thu 1:00-1:45 pm – Galleria 2

Projecting Terms

Cedalion provides rules for projecting terms.
● Strings: Depicted in magenta.
● Numbers: Depicted as decimals.
● Logic variables: Depicted in green italics.
● Compoun terms: Defined by the user...

Projection Definition

● The projection of compound terms can be
customized using projection definitions.

● Such definitions tell Cedalion how to visualize
some kind of compound term (concept).

The concept Its type

horizontal layout
A place holder for

the first argument
A place holder for the
second argumentThe label “+”

display plus(A, B)::expr(number)
as h ≪A::expr(number)≫ “+” ≪B::expr(number)≫

Projection Definition

● The projection of compound terms can be
customized using projection definitions.

● Such definitions tell Cedalion how to visualize
some kind of compound term (concept).

display A + B ::expr(number)
as h ≪A::expr(number)≫ “+” ≪B::expr(number)≫

Cedalion's Semantics

● Static Semantics:
– Checkers define domain specific validity rules.

– Cedalion's type system is also implemented as
a set of checkers.

● Dynamic Semantics:
– Logic programming.

Cedalion's Type System

● Concepts must be declared with a type
signature.

● Type inference is used to infer the types of
variables.

A typed
concept

Typed arguments

declare A + B ::expr(number)
where A::expr(number), B::expr(number)

Cedalion's Dynamic Semantics

● Cedalion is a logic programming language.
● A Cedalion program consists of a set of

statements, which can be:
– Deduction rules

– Rewrite rules

– Statements that evaluate to deduction rules
through rewrite rules.

● A Cedalion program is evaluated by querying
predicates. Predicates are defined using
deduction rules.

Deduction Rules

● Deduction rules come from Prolog.
● They have the form: Head :- Body.

– Head is a compound term of the predicate we
define.

– Body is a goal, consisting of a conjunction of
predicate calls.

A+B evaluates
to V

If A evaluates to A'
and B evalueates to B'

And V is A'+B'

if

V numberA + B :-
A' number A,
B' number B,
plus(A', B', V)

Rewrite Rules

● Rewrite rules transform user-defined statements to
deduction rules.

● They take the form: S
1
 ~> S

2
 where:

– S
1
 is a pattern matching the defined statement.

– S
2
 is matching the statement S

1
 is equivalent to.

● A Cedalion statement has a meaning if there is a
sequence of rewrite rules translating it to at least one
deduction rule.

This

Implies That

T Expr ≝ Def ~> V TExpr :-
V T Def

Defining a DSL in Cedalion

● Abstract syntax
– Concept declarations.

● Concrete syntax
– Projection definitions.

● Semantics
– Rewrite rules, deduction rules and other

statements.

Case Study: DNA Microarray Design

● Biologists use customized DNA
microarrays in research.

● Each microarray has contains
O(105) unique sequences.

● We provided a DSL for microarray
design.

● This DSL was used by our
colleagues at the Technion IIT to
design a real life DNA microarray.

This case study is joint work with
Itai Beno and Tali E. Haran,

Department of Biology,
Technion – Isreal Institute of Technology

Case Study Results

● The DSL was intuitive enough to allow our
colleagues (biologists) to understand and to
modify designs.

● Cost Effective:

– DSL implementation: 1 day.
– Initial design: 1 hour.
– Each modification: 1-2 minutes.
– Generating the microarray: ~6 minutes.

● DSL for expressing DNA microarray designs,
interoperable with other DSLs.

Additional Examples and
Case Studies

● Train Schedule Example (full source-code), in
our paper.

● Functional Programming.
● Process Calculus (CCS) + Modal Logic (HML).
● Language Workbench Competition of 2011

(LWC11) submission.
● A calculator product-line, comparison with MPS

[Lorenz and Rosenan, 2011].
All source-code can be found on the
Cedalion source-code repository, at

http://cedalion.sf.net

Related Work

● Language Oriented Programming

– [Ward, 1994] Language-oriented programming. Software-
Concepts and Tools, 15(4):147–161, 1994

– [Fowler, 2005] Language workbenches: The killer-app for
domain specific languages. 2005.

● Language Workbenches

– [Dmitriev, 2004] Language oriented programming: The next
programming paradigm. JetBrains onBoard, 1(2), 2004.

– [Simonyi, Christerson, and Clifford, 2006] Intentional
software. ACM SIGPLAN Notices, 41(10):451–464, 2006.

● Internal DSLs

– [Hudak, 1996] Building domain-specific embedded
languages. ACM Computing Surveys (CSUR), 28(4es),
1996.

Conclusion
● Cedalion presents a novel approach to LOP

– DSL user
● You can insist on using your preferred

notation.
– DSL designer

● DSLs can be cost effective.
– DSL tool developer

● Internal DSLs form a better stepping stone
than external DSLs.

● Future Work

– Formal semantics for Cedalion.

– The next big step: Cedalion for web applications.

Boaz Rosenan
David H. Lorenz

Dept. of Computer Science
The Open University of Israel

brosenan@cslab.openu.ac.il
http://cedalion.sf.net

Thank You!

http://cedalion.sf.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

